This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003335 #22 Oct 21 2023 18:24:51 %S A003335 12,19,26,33,38,40,45,47,52,54,59,61,64,66,68,71,73,75,78,80,82,85,87, %T A003335 89,90,92,94,96,97,99,101,103,104,106,108,110,111,113,115,116,117,118, %U A003335 120,122,123,124,125,127,129,130,131,132,134,136,137,138,139,141,142 %N A003335 Numbers that are the sum of 12 positive cubes. %C A003335 As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020 %H A003335 David A. Corneth, <a href="/A003335/b003335.txt">Table of n, a(n) for n = 1..10000</a> %e A003335 From _David A. Corneth_, Aug 01 2020: (Start) %e A003335 1120 is in the sequence as 1120 = 2^3 + 3^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 8^3. %e A003335 2339 is in the sequence as 2339 = 4^3 + 4^3 + 4^3 + 4^3 + 5^3 + 5^3 + 5^3 + 5^3 + 5^3 + 9^3 + 9^3. %e A003335 3594 is in the sequence as 3594 = 4^3 + 5^3 + 6^3 + 6^3 + 6^3 + 6^3 + 7^3 + 7^3 + 7^3 + 8^3 + 10^3. (End) %o A003335 (PARI) (A003335_upto(N, k=12, m=3)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(150) \\ Use 2nd & 3rd optional arg to get other sequences of this family. See A003333 for alternate code. - _M. F. Hasler_, Aug 03 2020 %Y A003335 A###### (x, y): Numbers that are the form of x nonzero y-th powers. %Y A003335 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2). %Y A003335 Cf. A000578 (cubes). %K A003335 nonn,easy %O A003335 1,1 %A A003335 _N. J. A. Sloane_