cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003346 Numbers that are the sum of 12 positive 4th powers.

This page as a plain text file.
%I A003346 #31 Feb 16 2025 08:32:27
%S A003346 12,27,42,57,72,87,92,102,107,117,122,132,137,147,152,162,167,172,177,
%T A003346 182,187,192,197,202,212,217,227,232,242,247,252,257,262,267,277,282,
%U A003346 292,297,307,312,322,327,332,342,347,357,362,372,377,387,392,402,407,412,417
%N A003346 Numbers that are the sum of 12 positive 4th powers.
%C A003346 a(88) = 636 = 5^4 + 11 and a(91) = 651 = 5^4 + 2^4 + 10  are the first two terms not congruent to 2 or 7 (mod 10). - _M. F. Hasler_, Aug 03 2020
%H A003346 David A. Corneth, <a href="/A003346/b003346.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H A003346 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number.</a>
%e A003346 From _David A. Corneth_, Aug 03 2020: (Start)
%e A003346 3740 is in the sequence as 3740 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 3^4 + 5^4 + 5^4 + 7^4.
%e A003346 4690 is in the sequence as 4690 = 2^4 + 2^4 + 2^4 + 2^4 + 2^4 + 4^4 + 4^4 + 4^4 + 5^4 + 5^4 + 6^4 + 6^4.
%e A003346 7193 is in the sequence as 7193 = 2^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4. (End)
%o A003346 (PARI) (A003346_upto(N, k=12, m=4)=[i|i<-[1..#N=sum(n=1, sqrtnint(N, m), 'x^n^m, O('x^N))^k], polcoef(N, i)])(500) \\ 2nd & 3rd optional arg allow to get other sequences of this group. See A003333 for alternate code. - _M. F. Hasler_, Aug 03 2020
%o A003346 (Python)
%o A003346 from itertools import count, takewhile, combinations_with_replacement as mc
%o A003346 def aupto(limit):
%o A003346     qd = takewhile(lambda x: x <= limit, (k**4 for k in count(1)))
%o A003346     ss = set(sum(c) for c in mc(qd, 12))
%o A003346     return sorted(s for s in ss if s <= limit)
%o A003346 print(aupto(417)) # _Michael S. Branicky_, Dec 27 2021
%Y A003346 Cf. A000583 (4th powers).
%Y A003346 Other numbers that are the sum of k positive m-th powers:
%Y A003346   A000404 (k=2, m=2), A000408 (3, 2), A000414 (4, 2), A047700 (k=5, m=2),
%Y A003346   A003325 (k=2, m=3), A003072 (k=3, m=3), A003327 .. A003335 (k=4..12, m=3),
%Y A003346   A003336 .. A003346 (k=2..12, m=4), A003347 .. A003357 (k=2..12, m=5),
%Y A003346   A003358 .. A003368 (k=2..12, m=6), A003369 .. A003379 (k=2..12, m=7),
%Y A003346   A003380 .. A003390 (k=2..12, m=8), A003391 .. A004801 (k=2..12, m=9),
%Y A003346   A004802 .. A004812 (k=2..12, m=10), A004813 .. A004823 (k=2..12, m=11).
%K A003346 nonn,easy
%O A003346 1,1
%A A003346 _N. J. A. Sloane_