This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003372 #17 Aug 04 2020 17:16:26 %S A003372 5,132,259,386,513,640,2191,2318,2445,2572,2699,4377,4504,4631,4758, %T A003372 6563,6690,6817,8749,8876,10935,16388,16515,16642,16769,16896,18574, %U A003372 18701,18828,18955,20760,20887,21014,22946,23073,25132,32771,32898,33025,33152,34957,35084,35211 %N A003372 Numbers that are the sum of 5 positive 7th powers. %H A003372 Chai Wah Wu, <a href="/A003372/b003372.txt">Table of n, a(n) for n = 1..10000</a> %e A003372 From _David A. Corneth_, Aug 04 2020: (Start) %e A003372 16898692 is in the sequence as 16898692 = 3^7 + 4^7 + 8^7 + 9^7 + 10^7. %e A003372 34270142 is in the sequence as 34270142 = 1^7 + 1^7 + 9^7 + 10^7 + 11^7. %e A003372 43759626 is in the sequence as 43759626 = 2^7 + 3^7 + 9^7 + 11^7 + 11^7. (End) %o A003372 (PARI) list(lim)=my(v=List(), A, B, C, D); lim\=1; for(a=1, sqrtnint(lim-4, 7), A=a^7; for(b=1, min(sqrtnint(lim-A-3, 7), a), B=A+b^7; for(c=1, min(sqrtnint(lim-B-2, 7), b), C=B+c^7; for(d=1,min(sqrtnint(lim-C-1,7),c), D=C+d^7; for(e=1,min(sqrtnint(lim-D,7),d), listput(v,D+e^7)))))); Set(v) \\ _Charles R Greathouse IV_, Nov 05 2017 %Y A003372 Cf. A001015 (seventh powers). %K A003372 nonn,easy %O A003372 1,1 %A A003372 _N. J. A. Sloane_