cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003373 Numbers that are the sum of 6 positive 7th powers.

This page as a plain text file.
%I A003373 #14 Aug 01 2020 23:47:57
%S A003373 6,133,260,387,514,641,768,2192,2319,2446,2573,2700,2827,4378,4505,
%T A003373 4632,4759,4886,6564,6691,6818,6945,8750,8877,9004,10936,11063,13122,
%U A003373 16389,16516,16643,16770,16897,17024,18575,18702,18829,18956,19083,20761,20888
%N A003373 Numbers that are the sum of 6 positive 7th powers.
%C A003373 As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020
%H A003373 David A. Corneth, <a href="/A003373/b003373.txt">Table of n, a(n) for n = 1..10000</a>
%e A003373 From _David A. Corneth_, Aug 01 2020: (Start)
%e A003373 3077074 is in the sequence as 3077074 = 1^7 + 2^7 + 5^7 + 5^7 + 7^7 + 8^7.
%e A003373 7160441 is in the sequence as 7160441 = 2^7 + 2^7 + 2^7 + 6^7 + 8^7 + 9^7.
%e A003373 12921079 is in the sequence as 12921079 = 2^7 + 2^7 + 2^7 + 7^7 + 8^7 + 10^7. (End)
%Y A003373 A###### (x, y): Numbers that are the form of x nonzero y-th powers.
%Y A003373 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
%K A003373 nonn,easy
%O A003373 1,1
%A A003373 _N. J. A. Sloane_
%E A003373 Removed incorrect program. - _David A. Corneth_, Aug 01 2020