This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003382 #26 Dec 01 2020 10:30:52 %S A003382 4,259,514,769,1024,6564,6819,7074,7329,13124,13379,13634,19684,19939, %T A003382 26244,65539,65794,66049,66304,72099,72354,72609,78659,78914,85219, %U A003382 131074,131329,131584,137634,137889,144194,196609,196864,203169,262144 %N A003382 Numbers that are the sum of 4 nonzero 8th powers. %C A003382 As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020 %H A003382 R. J. Mathar, <a href="/A003382/b003382.txt">Table of n, a(n) for n = 1..13540</a> replacing an earlier file that was missing terms. %e A003382 From _David A. Corneth_, Aug 01 2020: (Start) %e A003382 1246103043 is in the sequence as 1246103043 = 1^8 + 5^8 + 12^8 + 13^8. %e A003382 4194358628 is in the sequence as 4194358628 = 3^8 + 13^8 + 13^8 + 15^8. %e A003382 5148323267 is in the sequence as 5148323267 = 7^8 + 8^8 + 15^8 + 15^8. (End) %p A003382 A003382 := proc(nmax::integer) %p A003382 local a, x,x8,y,y8,z,z8,u,u8 ; %p A003382 a := {} ; %p A003382 for x from 1 do %p A003382 x8 := x^8 ; %p A003382 if 4*x8 > nmax then %p A003382 break; %p A003382 end if; %p A003382 for y from x do %p A003382 y8 := y^8 ; %p A003382 if x8+3*y8 > nmax then %p A003382 break; %p A003382 end if; %p A003382 for z from y do %p A003382 z8 := z^8 ; %p A003382 if x8+y8+2*z8 > nmax then %p A003382 break; %p A003382 end if; %p A003382 for u from z do %p A003382 u8 := u^8 ; %p A003382 if x8+y8+z8+u8 > nmax then %p A003382 break; %p A003382 end if; %p A003382 if x8+y8+z8+u8 <= nmax then %p A003382 a := a union {x8+y8+z8+u8} ; %p A003382 end if; %p A003382 end do: %p A003382 end do: %p A003382 end do: %p A003382 end do: %p A003382 sort(convert(a,list)) ; %p A003382 end proc: %p A003382 nmax := 102400000000 ; %p A003382 L:= A003382(nmax) ; %p A003382 LISTTOBFILE(L,"b003382.txt",1) ; # _R. J. Mathar_, Aug 01 2020 %t A003382 M = 102400000000; %t A003382 m = M^(1/8) // Ceiling; %t A003382 Table[s = a^8+b^8+c^8+d^8; If[s>M, Nothing, s], {a, m}, {b, m}, {c, m}, {d, m}] // Flatten // Union (* _Jean-François Alcover_, Dec 01 2020 *) %Y A003382 Cf. A001016 (8th powers). %Y A003382 A###### (x, y): Numbers that are the form of x nonzero y-th powers. %Y A003382 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2). %K A003382 nonn %O A003382 1,1 %A A003382 _N. J. A. Sloane_ %E A003382 Incorrect program removed by _David A. Corneth_, Aug 01 2020