cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003383 Numbers that are the sum of 5 nonzero 8th powers.

This page as a plain text file.
%I A003383 #30 Oct 29 2023 21:49:07
%S A003383 5,260,515,770,1025,1280,6565,6820,7075,7330,7585,13125,13380,13635,
%T A003383 13890,19685,19940,20195,26245,26500,32805,65540,65795,66050,66305,
%U A003383 66560,72100,72355,72610,72865,78660,78915,79170,85220,85475,91780,131075
%N A003383 Numbers that are the sum of 5 nonzero 8th powers.
%C A003383 As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020
%H A003383 David A. Corneth, <a href="/A003383/b003383.txt">Table of n, a(n) for n = 1..10000</a> (first 3302 terms from R. J. Mathar, replacing an earlier b-file that missed terms)
%e A003383 From _David A. Corneth_, Aug 01 2020: (Start)
%e A003383 100131584 is in the sequence as 100131584 = 2^8 + 2^8 + 4^8 + 4^8 + 10^8.
%e A003383 320123684 is in the sequence as 320123684 = 1^8 + 1^8 + 7^8 + 10^8 + 11^8.
%e A003383 750105634 is in the sequence as 750105634 = 2^8 + 7^8 + 10^8 + 11^8 + 12^8. (End)
%p A003383 A003383 := proc(nmax::integer)
%p A003383     local a, x,x8,y,y8,z,z8,u,u8,v,v8 ;
%p A003383     a := {} ;
%p A003383     for x from 1 do
%p A003383         x8 := x^8 ;
%p A003383         if 5*x8 > nmax then
%p A003383             break;
%p A003383         end if;
%p A003383         for y from x do
%p A003383             y8 := y^8 ;
%p A003383             if x8+4*y8 > nmax then
%p A003383                 break;
%p A003383             end if;
%p A003383             for z from y do
%p A003383                 z8 := z^8 ;
%p A003383                 if x8+y8+3*z8 > nmax then
%p A003383                     break;
%p A003383                 end if;
%p A003383                 for u from z do
%p A003383                     u8 := u^8 ;
%p A003383                     if x8+y8+z8+2*u8 > nmax then
%p A003383                         break;
%p A003383                     end if;
%p A003383                     for v from u do
%p A003383                         v8 := v^8 ;
%p A003383                         if x8+y8+z8+u8+v8 > nmax then
%p A003383                             break;
%p A003383                         end if;
%p A003383                         if x8+y8+z8+u8+v8 <= nmax then
%p A003383                             a := a  union {x8+y8+z8+u8+v8} ;
%p A003383                         end if;
%p A003383                     end do:
%p A003383                 end do:
%p A003383             end do:
%p A003383         end do:
%p A003383     end do:
%p A003383     sort(convert(a,list)) ;
%p A003383 end proc:
%p A003383 nmax := 500000000 ; ;
%p A003383 L:= A003383(nmax) ;
%p A003383 LISTTOBFILE(L,"b003383.txt",1) ; # _R. J. Mathar_, Aug 01 2020
%t A003383 M = 3784086305;
%t A003383 m = M^(1/8) // Ceiling;
%t A003383 Table[s = a^8+b^8+c^8+d^8+e^8; If[s>M, Nothing, s], {a, m}, {b, m}, {c, m}, {d, m}, {e, m}] // Flatten // Union (* _Jean-François Alcover_, Dec 01 2020 *)
%Y A003383 Cf. A001016 (8th powers).
%Y A003383 A###### (x, y): Numbers that are the form of x nonzero y-th powers.
%Y A003383 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
%K A003383 nonn,easy
%O A003383 1,1
%A A003383 _N. J. A. Sloane_