cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003385 Numbers that are the sum of 7 nonzero 8th powers.

This page as a plain text file.
%I A003385 #34 Oct 29 2023 21:49:28
%S A003385 7,262,517,772,1027,1282,1537,1792,6567,6822,7077,7332,7587,7842,8097,
%T A003385 13127,13382,13637,13892,14147,14402,19687,19942,20197,20452,20707,
%U A003385 26247,26502,26757,27012,32807,33062,33317,39367,39622,45927,65542,65797,66052
%N A003385 Numbers that are the sum of 7 nonzero 8th powers.
%H A003385 David A. Corneth, <a href="/A003385/b003385.txt">Table of n, a(n) for n = 1..10000</a> (first 6751 terms from R. J. Mathar, replacing an earlier file that missed terms)
%p A003385 A003385 := proc(nmax::integer)
%p A003385     local a, x,x8,y,y8,z,z8,u,u8,v,v8,w,w8,t,t8 ;
%p A003385     a := {} ;
%p A003385     for x from 1 do
%p A003385         x8 := x^8 ;
%p A003385         if 7*x8 > nmax then
%p A003385             break;
%p A003385         end if;
%p A003385         for y from x do
%p A003385             y8 := y^8 ;
%p A003385             if x8+6*y8 > nmax then
%p A003385                 break;
%p A003385             end if;
%p A003385             for z from y do
%p A003385                 z8 := z^8 ;
%p A003385                 if x8+y8+5*z8 > nmax then
%p A003385                     break;
%p A003385                 end if;
%p A003385                 for u from z do
%p A003385                     u8 := u^8 ;
%p A003385                     if x8+y8+z8+4*u8 > nmax then
%p A003385                         break;
%p A003385                     end if;
%p A003385                     for v from u do
%p A003385                         v8 := v^8 ;
%p A003385                         if x8+y8+z8+u8+3*v8 > nmax then
%p A003385                             break;
%p A003385                         end if;
%p A003385                         for w from v do
%p A003385                             w8 := w^8 ;
%p A003385                             if x8+y8+z8+u8+v8+2*w8 > nmax then
%p A003385                                 break;
%p A003385                             end if;
%p A003385                             for t from w do
%p A003385                                 t8 := t^8 ;
%p A003385                                 if x8+y8+z8+u8+v8+w8+t8 > nmax then
%p A003385                                     break;
%p A003385                                 end if;
%p A003385                                 if x8+y8+z8+u8+v8+w8+t8 <= nmax then
%p A003385                                     a := a  union {x8+y8+z8+u8+v8+w8+t8} ;
%p A003385                                 end if;
%p A003385                             end do:
%p A003385                         end do:
%p A003385                     end do:
%p A003385                 end do:
%p A003385             end do:
%p A003385         end do:
%p A003385     end do:
%p A003385     sort(convert(a,list)) ;
%p A003385 end proc:
%p A003385 nmax := 117440512 ;
%p A003385 L:= A003385(nmax) ;
%p A003385 LISTTOBFILE(L,"b003385.txt",1) ; # _R. J. Mathar_, Aug 01 2020
%t A003385 M = 217168099;
%t A003385 m = M^(1/8) // Ceiling;
%t A003385 Table[s = a^8+b^8+c^8+d^8+e^8+f^8+g^8; If[s>M, Nothing, s], {a, m}, {b, m}, {c, m}, {d, m}, {e, m}, {f, m}, {g, m}] // Flatten // Union (* _Jean-François Alcover_, Dec 01 2020 *)
%o A003385 (PARI) \\ also works for nmax=117440512 producing 6751 terms
%o A003385 nmax=67000;v=vectorsmall(nmax);L=ceil(#v^(1/8));for(k1=1,L, for(k2=k1,L, for(k3=k2,L, for(k4=k3,L, for(k5=k4,L, for(k6=k5,L, for(k7=k6,L, my(s=k1^8+k2^8+k3^8+k4^8+k5^8+k6^8+k7^8); if(s<=#v,v[s]++))))))));for(k=1,#v,if(v[k],print1(k,", "))) \\ _Hugo Pfoertner_, Aug 01 2020
%Y A003385 Cf. A001016 (8th powers).
%Y A003385 A###### (x, y): Numbers that are the form of x nonzero y-th powers.
%Y A003385 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
%K A003385 nonn,easy
%O A003385 1,1
%A A003385 _N. J. A. Sloane_
%E A003385 Incorrect program removed by _David A. Corneth_, Aug 04 2020