This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003386 #31 Apr 24 2023 12:14:12 %S A003386 8,263,518,773,1028,1283,1538,1793,2048,6568,6823,7078,7333,7588,7843, %T A003386 8098,8353,13128,13383,13638,13893,14148,14403,14658,19688,19943, %U A003386 20198,20453,20708,20963,26248,26503,26758,27013,27268,32808,33063,33318,33573 %N A003386 Numbers that are the sum of 8 nonzero 8th powers. %C A003386 As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020 %H A003386 David A. Corneth, <a href="/A003386/b003386.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Vincenzo Librandi) %e A003386 From _David A. Corneth_, Aug 01 2020: (Start) %e A003386 9534597 is in the sequence as 9534597 = 2^8 + 3^8 + 3^8 + 3^8 + 5^8 + 6^8 + 6^8 + 7^8. %e A003386 13209988 is in the sequence as 13209988 = 1^8 + 1^8 + 2^8 + 2^8 + 2^8 + 6^8 + 7^8 + 7^8. %e A003386 19046628 is in the sequence as 19046628 = 2^8 + 2^8 + 3^8 + 4^8 + 6^8 + 7^8 + 7^8 + 7^8. (End) %t A003386 M = 92646056; m = M^(1/8) // Ceiling; Reap[ %t A003386 For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++, %t A003386 For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++, %t A003386 For[g = f, g <= m, g++, For[h = g, h <= m, h++, %t A003386 s = a^8 + b^8 + c^8 + d^8 + e^8 + f^8 + g^8 + h^8; %t A003386 If[s <= M, Sow[s]]]]]]]]]]][[2, 1]] // Union (* _Jean-François Alcover_, Dec 01 2020 *) %Y A003386 A###### (x, y): Numbers that are the form of x nonzero y-th powers. %Y A003386 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2). %K A003386 nonn,easy %O A003386 1,1 %A A003386 _N. J. A. Sloane_ %E A003386 b-file checked by _R. J. Mathar_, Aug 01 2020 %E A003386 Incorrect program removed by _David A. Corneth_, Aug 01 2020