cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003387 Numbers that are the sum of 9 nonzero 8th powers.

This page as a plain text file.
%I A003387 #28 Oct 29 2023 21:49:42
%S A003387 9,264,519,774,1029,1284,1539,1794,2049,2304,6569,6824,7079,7334,7589,
%T A003387 7844,8099,8354,8609,13129,13384,13639,13894,14149,14404,14659,14914,
%U A003387 19689,19944,20199,20454,20709,20964,21219,26249,26504,26759,27014,27269
%N A003387 Numbers that are the sum of 9 nonzero 8th powers.
%C A003387 As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020
%H A003387 David A. Corneth, <a href="/A003387/b003387.txt">Table of n, a(n) for n = 1..10000</a> (first 3854 terms from R. J. Mathar, replacing an earlier file that was missing terms)
%e A003387 From _David A. Corneth_, Aug 01 2020: (Start)
%e A003387 5820102 is in the sequence as 5820102 = 1^8 + 1^8 + 1^8 + 1^8 + 5^8 + 5^8 + 6^8 + 6^8 + 6^8.
%e A003387 9960580 is in the sequence as 9960580 = 5^8 + 5^8 + 5^8 + 5^8 + 6^8 + 6^8 + 6^8 + 6^8 + 6^8.
%e A003387 11260068 is in the sequence as 11260068 = 1^8 + 1^8 + 2^8 + 4^8 + 5^8 + 6^8 + 6^8 + 6^8 + 7^8. (End)
%p A003387 A003387 := proc(nmax::integer)
%p A003387     local a, x,x8,y,y8,z,z8,u,u8,v,v8,w,w8,t,t8,s,s8,r,r8 ;
%p A003387     a := {} ;
%p A003387     for x from 1 do
%p A003387         x8 := x^8 ;
%p A003387         if 9*x8 > nmax then
%p A003387             break;
%p A003387         end if;
%p A003387         for y from x do
%p A003387             y8 := y^8 ;
%p A003387             if x8+8*y8 > nmax then
%p A003387                 break;
%p A003387             end if;
%p A003387             for z from y do
%p A003387                 z8 := z^8 ;
%p A003387                 if x8+y8+7*z8 > nmax then
%p A003387                     break;
%p A003387                 end if;
%p A003387                 for u from z do
%p A003387                     u8 := u^8 ;
%p A003387                     if x8+y8+z8+6*u8 > nmax then
%p A003387                         break;
%p A003387                     end if;
%p A003387                     for v from u do
%p A003387                         v8 := v^8 ;
%p A003387                         if x8+y8+z8+u8+5*v8 > nmax then
%p A003387                             break;
%p A003387                         end if;
%p A003387                         for w from v do
%p A003387                             w8 := w^8 ;
%p A003387                             if x8+y8+z8+u8+v8+4*w8 > nmax then
%p A003387                                 break;
%p A003387                             end if;
%p A003387                             for t from w do
%p A003387                                 t8 := t^8 ;
%p A003387                                 if x8+y8+z8+u8+v8+w8+3*t8 > nmax then
%p A003387                                     break;
%p A003387                                 end if;
%p A003387                                 for s from t do
%p A003387                                     s8 := s^8 ;
%p A003387                                     if x8+y8+z8+u8+v8+w8+t8+2*s8 > nmax then
%p A003387                                         break;
%p A003387                                     end if;
%p A003387                                     for r from s do
%p A003387                                         r8 := r^8 ;
%p A003387                                         if x8+y8+z8+u8+v8+w8+t8+s8+r8 > nmax then
%p A003387                                             break ;
%p A003387                                         end if;
%p A003387                                         if x8+y8+z8+u8+v8+w8+t8+s8+r8 <= nmax then
%p A003387                                             a := a  union {x8+y8+z8+u8+v8+w8+t8+s8+r8} ;
%p A003387                                         end if;
%p A003387                                     end do:
%p A003387                                 end do:
%p A003387                             end do:
%p A003387                         end do:
%p A003387                     end do:
%p A003387                 end do:
%p A003387             end do:
%p A003387         end do:
%p A003387     end do:
%p A003387     sort(convert(a,list)) ;
%p A003387 end proc:
%p A003387 nmax := 15116544 ;
%p A003387 L:= A003387(nmax) ;
%p A003387 LISTTOBFILE(L,"b003387.txt",1) ; # _R. J. Mathar_, Aug 01 2020
%t A003387 M = 45711012; m = M^(1/8) // Ceiling; Reap[
%t A003387 For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,
%t A003387 For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,
%t A003387 For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,
%t A003387 s = a^8 + b^8 + c^8 + d^8 + e^8 + f^8 + g^8 + h^8 + i^8;
%t A003387 If[s <= M, Sow[s]]]]]]]]]]]][[2, 1]] // Union (* _Jean-François Alcover_, Dec 01 2020 *)
%Y A003387 A###### (x, y): Numbers that are the form of x nonzero y-th powers.
%Y A003387 Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
%K A003387 nonn,easy
%O A003387 1,1
%A A003387 _N. J. A. Sloane_
%E A003387 Incorrect program removed by _David A. Corneth_, Aug 01 2020