This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003451 M3330 #54 Jun 25 2023 20:07:41 %S A003451 1,4,8,16,25,40,56,80,105,140,176,224,273,336,400,480,561,660,760,880, %T A003451 1001,1144,1288,1456,1625,1820,2016,2240,2465,2720,2976,3264,3553, %U A003451 3876,4200,4560,4921,5320,5720,6160,6601,7084,7568,8096,8625,9200,9776,10400 %N A003451 Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation. %C A003451 In other words, the number of 2-dissections of an n-gon modulo the cyclic action. %D A003451 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003451 D. Bowman and A. Regev, <a href="http://arxiv.org/abs/1209.6270">Counting symmetry classes of dissections of a convex regular polygon</a>, arXiv:1209.6270 [math.CO], 2012. %H A003451 P. Lisonek, <a href="http://dx.doi.org/10.1006/jsco.1995.1066">Closed forms for the number of polygon dissections</a>, Journal of Symbolic Computation 20 (1995), 595-601. %H A003451 Ronald C. Read, <a href="http://dx.doi.org/10.1007/BF03031688">On general dissections of a polygon</a>, Aequat. math. 18 (1978) 370-388. %H A003451 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2, 1, -4, 1, 2, -1). %F A003451 G.f.: x^5 * (1 + 2*x - x^2 ) / ((1 - x)^4*(1 + x)^2). %F A003451 See also the Maple code for an explicit formula. %F A003451 a(n) = A006584(n+3) - A027656(n). - _Yosu Yurramendi_, Aug 07 2008 %F A003451 a(n) = (n-4)*(2*n^2-4*n-3*(1-(-1)^n))/24, for n>=5. - _Luce ETIENNE_, Apr 04 2015 %p A003451 T51:= proc(n) %p A003451 if n mod 2 = 0 then n*(n-2)*(n-4)/12; %p A003451 else (n+1)*(n-3)*(n-4)/12; fi end; %p A003451 [seq(T51(n),n=5..80)]; # _N. J. A. Sloane_, Dec 28 2012 %t A003451 Table[((n - 4) (2 n^2 - 4 n - 3 (1 - (-1)^n)) / 24), {n, 5, 60}] (* _Vincenzo Librandi_, Apr 05 2015 *) %t A003451 CoefficientList[Series[(1+2*x-x^2)/((1-x)^4*(1+x)^2),{x,0,20}],x] (* _Vaclav Kotesovec_, Apr 05 2015 *) %o A003451 (PARI) Vec((1 + 2*x - x^2 ) / ((1 - x)^4*(1 + x)^2) + O(x^50)) \\ _Michel Marcus_, Apr 04 2015 %o A003451 (PARI) \\ See A295495 for DissectionsModCyclic() %o A003451 { my(v=DissectionsModCyclic(apply(i->y, [1..30]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ _Andrew Howroyd_, Nov 24 2017 %o A003451 (Magma) [(n-4)*(2*n^2-4*n-3*(1-(-1)^n))/24: n in [5..60]]; // _Vincenzo Librandi_, Apr 05 2015 %Y A003451 Column 3 of A295633. %Y A003451 Cf. A003453, A006584, A027656. %K A003451 nonn %O A003451 5,2 %A A003451 _N. J. A. Sloane_ %E A003451 Entry revised (following Bowman and Regev) by _N. J. A. Sloane_, Dec 28 2012 %E A003451 First formula adapted to offset by _Vaclav Kotesovec_, Apr 05 2015 %E A003451 Name clarified by _Andrew Howroyd_, Nov 25 2017