A003457 a(n) = ceiling(Bernoulli(2n)/(-4n)).
0, 1, 0, 1, 0, 1, 0, 1, -1, 14, -140, 1804, -27413, 487469, -10026347, 236192434, -6317862397, 190439655627, -6425425249652, 241207241774251, -10020155328258126, 458387180159766539, -22989944171828251745, 1259023596072554784855, -75008667460769643668557
Offset: 1
Keywords
References
- F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg, 2nd ed. 1994, p. 130.
- Douglas C. Ravenel, Complex cobordism theory for number theorists, Lecture Notes in Mathematics, 1326, Springer-Verlag, Berlin-New York, 1988, pp. 123-133.
Links
- T. D. Noe, Table of n, a(n) for n = 1..100
- R. C. Read, On general dissections of a polygon, Preprint (1974)
- Index entries for sequences related to Bernoulli numbers.
Crossrefs
Cf. A003414 (floor instead of ceiling).
Programs
-
Mathematica
Table[Ceiling[BernoulliB[2n]/(-4n)], {n, 24}] (* Alonso del Arte, Jul 11 2012 *)