This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003593 #60 Oct 23 2024 00:41:50 %S A003593 1,3,5,9,15,25,27,45,75,81,125,135,225,243,375,405,625,675,729,1125, %T A003593 1215,1875,2025,2187,3125,3375,3645,5625,6075,6561,9375,10125,10935, %U A003593 15625,16875,18225,19683,28125,30375,32805,46875,50625,54675,59049 %N A003593 Numbers of the form 3^i*5^j with i, j >= 0. %C A003593 Odd 5-smooth numbers (A051037). - _Reinhard Zumkeller_, Sep 18 2005 %H A003593 Reinhard Zumkeller, <a href="/A003593/b003593.txt">Table of n, a(n) for n = 1..10000</a> %F A003593 a(n) ~ 1/sqrt(15)*exp(sqrt(2*log(3)*log(5)*n)) asymptotically. - _Benoit Cloitre_, Jan 22 2002 %F A003593 The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(15*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - _Peter Bala_, Mar 18 2019 %F A003593 Sum_{n>=1} 1/a(n) = (3*5)/((3-1)*(5-1)) = 15/8. - _Amiram Eldar_, Sep 22 2020 %p A003593 isA003593 := proc(n) %p A003593 if n = 1 then %p A003593 true; %p A003593 else %p A003593 return (numtheory[factorset](n) minus {3, 5} = {} ); %p A003593 end if; %p A003593 end proc: %p A003593 A003593 := proc(n) %p A003593 option remember; %p A003593 if n = 1 then %p A003593 1; %p A003593 else %p A003593 for a from procname(n-1)+1 do %p A003593 if isA003593(a) then %p A003593 return a; %p A003593 end if; %p A003593 end do: %p A003593 end if; %p A003593 end proc: %p A003593 seq(A003593(n),n=1..30) ; # _R. J. Mathar_, Aug 04 2016 %t A003593 fQ[n_] := PowerMod[15, n, n] == 0; Select[Range[60000], fQ] (* _Bruno Berselli_, Sep 24 2012 *) %o A003593 (PARI) list(lim)=my(v=List(),N);for(n=0,log(lim)\log(5),N=5^n;while(N<=lim,listput(v,N);N*=3));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jun 28 2011 %o A003593 (PARI) is(n)=n==3^valuation(n,3)*5^valuation(n,5) \\ _Charles R Greathouse IV_, Apr 23 2013 %o A003593 (Haskell) %o A003593 import Data.Set (singleton, deleteFindMin, insert) %o A003593 a003593 n = a003593_list !! (n-1) %o A003593 a003593_list = f (singleton 1) where %o A003593 f s = m : f (insert (3*m) $ insert (5*m) s') where %o A003593 (m,s') = deleteFindMin s %o A003593 -- _Reinhard Zumkeller_, Sep 13 2011 %o A003593 (Magma) [n: n in [1..60000] | PrimeDivisors(n) subset [3,5]]; // _Bruno Berselli_, Sep 24 2012 %o A003593 (GAP) Filtered([1..60000],n->PowerMod(15,n,n)=0); # _Muniru A Asiru_, Mar 19 2019 %o A003593 (Python) %o A003593 from sympy import integer_log %o A003593 def A003593(n): %o A003593 def bisection(f,kmin=0,kmax=1): %o A003593 while f(kmax) > kmax: kmax <<= 1 %o A003593 while kmax-kmin > 1: %o A003593 kmid = kmax+kmin>>1 %o A003593 if f(kmid) <= kmid: %o A003593 kmax = kmid %o A003593 else: %o A003593 kmin = kmid %o A003593 return kmax %o A003593 def f(x): return n+x-sum(integer_log(x//5**i,3)[0]+1 for i in range(integer_log(x,5)[0]+1)) %o A003593 return bisection(f,n,n) # _Chai Wah Wu_, Oct 22 2024 %Y A003593 Cf. A033849, A112751-A112756, A143202, A022337 (list of j), A022336(list of i). %Y A003593 Cf. A264997 (partitions into), see also A264998. Cf. A108347 (odd 7-smooth). %K A003593 nonn %O A003593 1,2 %A A003593 _N. J. A. Sloane_