This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003595 #56 Jul 06 2025 10:34:17 %S A003595 1,5,7,25,35,49,125,175,245,343,625,875,1225,1715,2401,3125,4375,6125, %T A003595 8575,12005,15625,16807,21875,30625,42875,60025,78125,84035,109375, %U A003595 117649,153125,214375,300125,390625,420175,546875,588245,765625,823543,1071875,1500625 %N A003595 Numbers of the form 5^i*7^j with i, j >= 0. %C A003595 Successive k such that phi(35*k) = 24*k: 35*a(n) = A033851(n). - _Artur Jasinski_, Nov 09 2008 %H A003595 Vaclav Kotesovec, <a href="/A003595/b003595.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz) %H A003595 Vaclav Kotesovec, <a href="/A003595/a003595.jpg">Graph - the asymptotic ratio (400000 terms)</a>. %H A003595 David Ryan, <a href="https://arxiv.org/abs/1612.01860">An algorithm to assign musical prime commas to every prime number and construct a universal and compact free Just Intonation musical notation</a>, Preprint, arXiv:1612.01860 [cs.SD], 2016-2017. %F A003595 Sum_{n>=1} 1/a(n) = (5*7)/((5-1)*(7-1)) = 35/24. - _Amiram Eldar_, Sep 22 2020 %F A003595 a(n) ~ exp(sqrt(2*log(5)*log(7)*n)) / sqrt(35). - _Vaclav Kotesovec_, Sep 22 2020 %F A003595 a(n) = 5^A025652(n) * 7^A025667(n). - _R. J. Mathar_, Jul 06 2025 %t A003595 a = {}; Do[If[EulerPhi[35 k] == 24 k, AppendTo[a, k]], {k, 1, 10000}]; a (* _Artur Jasinski_, Nov 09 2008 *) %t A003595 fQ[n_] := PowerMod[35, n, n] == 0; Select[Range[600000], fQ] (* _Bruno Berselli_, Sep 24 2012 *) %o A003595 (PARI) list(lim)=my(v=List(),N);for(n=0,log(lim)\log(7),N=7^n;while(N<=lim,listput(v,N);N*=5));vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jun 28 2011 %o A003595 (Magma) [n: n in [1..600000] | PrimeDivisors(n) subset [5,7]]; // _Bruno Berselli_, Sep 24 2012 %o A003595 (Haskell) %o A003595 import Data.Set (singleton, deleteFindMin, insert) %o A003595 a003595 n = a003595_list !! (n-1) %o A003595 a003595_list = f $ singleton 1 where %o A003595 f s = y : f (insert (5 * y) $ insert (7 * y) s') %o A003595 where (y, s') = deleteFindMin s %o A003595 -- _Reinhard Zumkeller_, May 16 2015 %o A003595 (Python) %o A003595 from sympy import integer_log %o A003595 def A003595(n): %o A003595 def bisection(f,kmin=0,kmax=1): %o A003595 while f(kmax) > kmax: kmax <<= 1 %o A003595 while kmax-kmin > 1: %o A003595 kmid = kmax+kmin>>1 %o A003595 if f(kmid) <= kmid: %o A003595 kmax = kmid %o A003595 else: %o A003595 kmin = kmid %o A003595 return kmax %o A003595 def f(x): return n+x-sum(integer_log(x//7**i,5)[0]+1 for i in range(integer_log(x,7)[0]+1)) %o A003595 return bisection(f,n,n) # _Chai Wah Wu_, Sep 16 2024 %Y A003595 Cf. A033851, A143207, A147571-A147580. %Y A003595 Cf. A003586, A003592, A003593, A003594. %Y A003595 Cf. A025652, A025667. %K A003595 nonn %O A003595 1,2 %A A003595 _N. J. A. Sloane_