This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003603 M0138 #92 Jan 05 2025 19:51:33 %S A003603 1,1,1,2,1,3,2,1,4,3,2,5,1,6,4,3,7,2,8,5,1,9,6,4,10,3,11,7,2,12,8,5, %T A003603 13,1,14,9,6,15,4,16,10,3,17,11,7,18,2,19,12,8,20,5,21,13,1,22,14,9, %U A003603 23,6,24,15,4,25,16,10,26,3,27,17,11,28,7,29,18,2,30,19,12,31,8,32,20,5,33 %N A003603 Fractal sequence obtained from Fibonacci numbers (or Wythoff array). %C A003603 Length of n-th row = A000045(n); last term of n-th row = A094967(n-1); sum of n-th row = A033192(n-1). - _Reinhard Zumkeller_, Jan 26 2012 %D A003603 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003603 Reinhard Zumkeller, <a href="/A003603/b003603.txt">Rows n = 1..20 of triangle, flattened</a> %H A003603 J. H. Conway and N. J. A. Sloane, <a href="/A019586/a019586.pdf">Notes on the Para-Fibonacci and related sequences</a>. %H A003603 David Garth and Joseph Palmer, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/54-1/GarthPalmer10292015.pdf">Self-Similar Sequences and Generalized Wythoff Arrays</a>, Fibonacci Quart. 54 (2016), no. 1, 72-78. %H A003603 Clark Kimberling, <a href="http://faculty.evansville.edu/ck6/integer/fractals.html">Fractal sequences</a>. %H A003603 Clark Kimberling, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7321.pdf">Numeration systems and fractal sequences</a>, Acta Arithmetica 73 (1995) 103-117. %H A003603 A. J. Macfarlane, <a href="https://arxiv.org/abs/2405.18128">On the fibbinary numbers and the Wythoff array</a>, arXiv:2405.18128 [math.CO], 2024. See page 8. %H A003603 N. J. A. Sloane, <a href="/classic.html#WYTH">Classic Sequences</a>. %F A003603 Vertical para-budding sequence: says which row of Wythoff array (starting row count at 1) contains n. %F A003603 If one deletes the first occurrence of 1, 2, 3, ... the sequence is unchanged. %F A003603 From _Clark Kimberling_, Oct 29 2009: (Start) %F A003603 The fractal sequence of the Wythoff array can be constructed without reference to the Wythoff array or Fibonacci numbers. Write initial rows: %F A003603 Row 1: .... 1 %F A003603 Row 2: .... 1 %F A003603 Row 3: .... 1..2 %F A003603 Row 4: .... 1..3..2 %F A003603 For n>4, to form row n+1, let k be the least positive integer not yet used; write row n, and right after the first number that is also in row n-1, place k; right after the next number that is also in row n-1, place k+1, and continue. A003603 is the concatenation of the rows. (End) %F A003603 Conjecture: a(n) = abs(floor(n/phi) - floor(n*(1/phi + 1/(-phi)^(A035612(n) + 1)))) where phi = (1+sqrt(5))/2. - _Alan Michael Gómez Calderón_, Oct 27 2023 %e A003603 In the recurrence for making new rows, we get row 5 from row 4 thus: write row 4: 1,3,2, and then place 4 right after 1, and place 5 right after 2, getting 1,4,3,2,5. - _Clark Kimberling_, Oct 29 2009 %p A003603 A003603 := proc(n::posint) %p A003603 local r,c,W ; %p A003603 for r from 1 do %p A003603 for c from 1 do %p A003603 W := A035513(r,c) ; %p A003603 if W = n then %p A003603 return r ; %p A003603 elif W > n then %p A003603 break ; %p A003603 end if; %p A003603 end do: %p A003603 end do: %p A003603 end proc: %p A003603 seq(A003603(n),n=1..100) ; # _R. J. Mathar_, Aug 13 2021 %t A003603 num[n_, b_] := Last[NestWhile[{Mod[#[[1]], Last[#[[2]]]], Drop[#[[2]], -1], Append[#[[3]], Quotient[#[[1]], Last[#[[2]]]]]} &, {n, b, {}}, #[[2]] =!= {} &]]; %t A003603 left[n_, b_] := If[Last[num[n, b]] == 0, Dot[num[n, b], Rest[Append[Reverse[b], 0]]], n]; %t A003603 fractal[n_, b_] := # - Count[Last[num[Range[#], b]], 0] &@ %t A003603 FixedPoint[left[#, b] &, n]; %t A003603 Table[fractal[n, Table[Fibonacci[i], {i, 2, 12}]], {n, 30}] (* _Birkas Gyorgy_, Apr 13 2011 *) %t A003603 row[1] = row[2] = {1}; %t A003603 row[n_] := row[n] = Module[{ro, pos, lp, ins}, ro = row[n-1]; pos = Position[ro, Alternatives @@ Intersection[ro, row[n-2]]] // Flatten; lp = Length[pos]; ins = Range[lp] + Max[ro]; Do[ro = Insert[ro, ins[[i]], pos[[i]] + i], {i, 1, lp}]; ro]; %t A003603 Array[row, 9] // Flatten (* _Jean-François Alcover_, Jul 12 2016 *) %o A003603 (Haskell) -- according to Kimberling, see formula section. %o A003603 a003603 n k = a003603_row n !! (k-1) %o A003603 a003603_row n = a003603_tabl !! (n-1) %o A003603 a003603_tabl = [1] : [1] : wythoff [2..] [1] [1] where %o A003603 wythoff is xs ys = f is xs ys [] where %o A003603 f js [] [] ws = ws : wythoff js ys ws %o A003603 f js [] [v] ws = f js [] [] (ws ++ [v]) %o A003603 f (j:js) (u:us) (v:vs) ws %o A003603 | u == v = f js us vs (ws ++ [v,j]) %o A003603 | u /= v = f (j:js) (u:us) vs (ws ++ [v]) %o A003603 -- _Reinhard Zumkeller_, Jan 26 2012 %Y A003603 Equals A019586(n) + 1. Cf. A003602, A000045, A033192, A035513, A035612, A094967, A265650. %K A003603 nonn,easy,nice,eigen,tabf %O A003603 1,4 %A A003603 _N. J. A. Sloane_, _Mira Bernstein_ %E A003603 More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003 %E A003603 Keyword tabf added by _Reinhard Zumkeller_, Jan 26 2012