cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003623 Wythoff AB-numbers: floor(floor(n*phi^2)*phi), where phi = (1+sqrt(5))/2.

Original entry on oeis.org

3, 8, 11, 16, 21, 24, 29, 32, 37, 42, 45, 50, 55, 58, 63, 66, 71, 76, 79, 84, 87, 92, 97, 100, 105, 110, 113, 118, 121, 126, 131, 134, 139, 144, 147, 152, 155, 160, 165, 168, 173, 176, 181, 186, 189, 194, 199, 202, 207, 210, 215, 220, 223, 228, 231, 236, 241, 244, 249
Offset: 1

Views

Author

Keywords

Comments

Previous name was: "From a 3-way splitting of positive integers: [[n*phi^2]*phi]."
Union of A001950 & A003622 & A003623 = A000027.
a(n) is odd if and only if n is odd. - Clark Kimberling, Apr 21 2011
A005614(a(n)-1)=1 and A005614(a(n))=1, n>=1. Because Wythoff AB-numbers (see the formula section) mark the first entry of pairs of 1s in the rabbit sequence A005614(n-1), n>=1. - Wolfdieter Lang, Jun 28 2011
a(n) = k if and only if A270788(k) = 3, where A270788 is the infinite Fibonacci word on {1,2,3}. - Michel Dekking, Sep 07 2016
The asymptotic density of this sequence is 1/phi^3 = phi^3 - 4 = A098317 - 4 = 0.236067... . - Amiram Eldar, Mar 24 2025

References

  • Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 10.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.

Programs

  • Maple
    A003623:=proc(n) return floor(floor(n*(3+sqrt(5))/2)*(1+sqrt(5))/2); end:seq(A003623(n),n=1..59); # Nathaniel Johnston, Apr 21 2011
  • Mathematica
    f[n_] := Floor[ GoldenRatio * Floor[ n * GoldenRatio^2]]; Array[f, 47]
    (* another *) Table[n+2Floor[n*GoldenRatio],{n,1,100}]
  • PARI
    a(n)=(n+sqrtint(5*n^2))\2*2+n \\ Charles R Greathouse IV, Jan 25 2022
  • Python
    from sympy import floor
    from mpmath import phi
    def a(n): return floor(n*phi) + floor(n*phi**2) # Indranil Ghosh, Jun 10 2017
    
  • Python
    from math import isqrt
    def A003623(n): return (n+isqrt(5*n**2)&-2)+n # Chai Wah Wu, Aug 25 2022
    

Formula

a(n) = floor(n*phi) + floor(n*phi^2) = A000201(n) + A001950(n).
a(n) = 2*floor(n*phi) + n = 2*A000201(n) + n.
a(n) = A(B(n)) with A(k):=A000201(k) and B(k):=A001950(k), k>=1 (Wythoff AB-numbers).

Extensions

Name improved by Michel Dekking, Sep 07 2016