A003635 Inconsummate numbers in base 10: no number is this multiple of the sum of its digits (in base 10).
62, 63, 65, 75, 84, 95, 161, 173, 195, 216, 261, 266, 272, 276, 326, 371, 372, 377, 381, 383, 386, 387, 395, 411, 416, 422, 426, 431, 432, 438, 441, 443, 461, 466, 471, 476, 482, 483, 486, 488, 491, 492, 493, 494, 497, 498, 516, 521, 522, 527, 531, 533, 536
Offset: 1
References
- J. H. Conway, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Daniel Mondot, Table of n, a(n) for n = 1..10867
- Giovanni Resta, Numbers Aplenty: Inconsummate numbers
Programs
-
Maple
For Maple code see A058906.
-
Mathematica
nmax = 1000; Reap[ Do[k = n; kmax = 100*n; While[ Tr[ IntegerDigits[k]]*n != k && k < kmax, k = k + n]; If[k == kmax, Sow[n]], {n, 1, nmax}]][[2, 1]] (* Jean-François Alcover, Jul 12 2012 *)
-
Python
from itertools import count, islice, combinations_with_replacement def A003635_gen(startvalue=1): # generator of terms >= startvalue for n in count(max(startvalue,1)): for l in count(1): if 9*l*n < 10**(l-1): yield n break for d in combinations_with_replacement(range(10),l): if (s:=sum(d))>0 and sorted(str(s*n)) == [str(e) for e in d]: break else: continue break A003635_list = list(islice(A003635_gen(),20)) # Chai Wah Wu, May 09 2023