cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003655 Discriminants of real quadratic fields with narrow class number 1.

This page as a plain text file.
%I A003655 M3782 #18 Jul 20 2022 08:48:02
%S A003655 5,8,13,17,29,37,41,53,61,73,89,97,101,109,113,137,149,157,173,181,
%T A003655 193,197,233,241,269,277,281,293,313,317,337,349,353,373,389,397,409,
%U A003655 421,433,449,457,461,509,521,541,557,569,593,601,613,617,641,653,661,673
%N A003655 Discriminants of real quadratic fields with narrow class number 1.
%C A003655 Or, positive fundamental discriminants with form class number 1.
%C A003655 All terms except 8 are primes congruent to 1 modulo 4. - _Jianing Song_, Jul 20 2022
%D A003655 D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
%D A003655 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A003655 Ezra Brown, <a href="https://doi.org/10.1090/S0002-9947-1974-0364172-9">Class numbers of real quadratic number fields</a>, Trans. Amer. Math. Soc. 190 (1974), 99-107.
%H A003655 Charles Delorme and Guillermo Pineda-Villavicencio, <a href="http://www.emis.de/journals/JIS/VOL18/Pineda/pin2.pdf">Quadratic Form Representations via Generalized Continuants</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.6.4.
%o A003655 (PARI) isA003655(n) = (n==8) || (isprime(n) && (n%4==1) && (qfbclassno(n)==1)) \\ _Jianing Song_, Jul 20 2022
%Y A003655 Equals {8} U (A003656 intersect A002144).
%Y A003655 Equals A003656 \ A327297.
%K A003655 nonn
%O A003655 1,1
%A A003655 _N. J. A. Sloane_, _Mira Bernstein_
%E A003655 Better definition from _David Brink_, Dec 30 2007, Jan 01 2008