This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003674 #23 Mar 02 2023 21:24:53 %S A003674 0,3,6,36,120,528,2016,8256,32640,131328,523776,2098176,8386560, %T A003674 33558528,134209536,536887296,2147450880,8590000128,34359607296, %U A003674 137439215616,549755289600,2199024304128,8796090925056 %N A003674 a(n) = 2^(n-1)*(2^n - (-1)^n). %D A003674 M. Gardner, Riddles of the Sphinx, New Mathematical Library, M.A.A., 1987, p. 145. Math. Rev. 89i:00015. %H A003674 G. C. Greubel, <a href="/A003674/b003674.txt">Table of n, a(n) for n = 0..1000</a> %H A003674 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,8). %F A003674 G.f.: 3*x/((1+2*x)*(1-4*x)). %F A003674 a(n) = 3*A003683(n). %F A003674 Given the 2 X 2 matrix M = [1,3; 3,1], a(n) = term (1,2) in M^n, n>0. - _Gary W. Adamson_, Aug 06 2010 %F A003674 From _G. C. Greubel_, Feb 17 2023: (Start) %F A003674 a(n) = 2*a(n-1) + 8*a(n-2). %F A003674 a(n) = 3*2^(n-1)*A001045(n). %F A003674 a(n) = 2^(n-1)*A062510(n). %F A003674 a(n) = (1/2)*A071930(n+1). %F A003674 E.g.f.: (1/2)*(exp(4*x) - exp(-2*x)). (End) %t A003674 Table[(4^n-(-2)^n)/2, {n,0,40}] (* _G. C. Greubel_, Feb 17 2023 *) %o A003674 (PARI) a(n)=if(n<0,0,2^(n-1)*(2^n-(-1)^n)) %o A003674 (Magma) [(4^n -(-2)^n)/2: n in [0..40]]; // _G. C. Greubel_, Feb 17 2023 %o A003674 (SageMath) [(4^n-(-2)^n)/2 for n in range(41)] # _G. C. Greubel_, Feb 17 2023 %Y A003674 Cf. A001045, A003683 (one-third), A062510, A071930. %K A003674 nonn,easy %O A003674 0,2 %A A003674 _N. J. A. Sloane_