This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003709 M3986 #30 Feb 11 2023 12:21:59 %S A003709 1,-1,5,-37,457,-8169,188685,-5497741,197920145,-8541537105, %T A003709 432381471509,-25340238127989,1699894200469849,-129076687233903673, %U A003709 10989863562589199389,-1041327644107761435101,109095160722852951673633,-12561989444137938396142753 %N A003709 E.g.f. cos(sin(x)) (even powers only). %C A003709 |a(n)| is the number of ways to partition the set {1,2,...,2n} into an even number of odd size blocks. - _Geoffrey Critzer_, Apr 11 2010 %C A003709 Unsigned sequence has e.g.f. cosh(sinh(x)) (even powers only). %D A003709 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 226, 8th line of table. %D A003709 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A003709 T. D. Noe, <a href="/A003709/b003709.txt">Table of n, a(n) for n = 0..50</a> %F A003709 a(n) = sum(j=0..n, (2^(2*j+1)*sum(i=0..(n-j), (i-n+j)^(2*n)*binomial((2*n-2*j),i)*(-1)^(n-i))/(2*n-2*j)!)), n>0, a(1)=0. - _Vladimir Kruchinin_, Jun 08 2011 %p A003709 b:= proc(n) option remember; `if`(n=0, 1, add( %p A003709 b(n-j)*irem(j, 2)*binomial(n-1, j-1), j=1..n)) %p A003709 end: %p A003709 a:= n-> b(2*n)*(-1)^n: %p A003709 seq(a(n), n=0..20); # _Alois P. Heinz_, Feb 11 2023 %t A003709 Take[With[{nn=40},CoefficientList[Series[Cos[Sin[x]],{x,0,nn}],x] Range[0,nn]!],{1,-1,2}] (* _Harvey P. Dale_, Sep 18 2011 *) %o A003709 (Maxima) %o A003709 a(n):=sum((2^(2*j+1)*sum((i-n+j)^(2*n)*binomial((2*n-2*j),i)*(-1)^(n-i),i,0,(n-j))/(2*n-2*j)!),j,0,n); /* _Vladimir Kruchinin_, Jun 08 2011 */ %K A003709 sign %O A003709 0,3 %A A003709 _R. H. Hardin_, _Simon Plouffe_