This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003729 #23 Jan 01 2019 06:31:05 %S A003729 11,176,2911,48301,801701,13307111,220880176,3666315811,60855946601, %T A003729 1010127453401,16766766924211,278305942640176,4619507031938711, %U A003729 76677648402694901,1272746577484955101,21125893715367851311 %N A003729 Number of perfect matchings (or domino tilings) in graph C_{5} X P_{2n}. %D A003729 F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154. %D A003729 Per Hakan Lundow, "Computation of matching polynomials and the number of 1-factors in polygraphs", Research report, No 12, 1996, Department of Math., Umea University, Sweden. %H A003729 F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154. %H A003729 F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a> %H A003729 F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a> %H A003729 Per Hakan Lundow, <a href="http://www.theophys.kth.se/~phl/Text/1factors2.ps.gz">Enumeration of matchings in polygraphs</a>, 1998. %H A003729 <a href="/index/Do#domino">Index entries for sequences related to dominoes</a> %H A003729 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (19, -41, 19, -1). %F A003729 a(n) = 19a(n-1) - 41a(n-2) + 19a(n-3) - a(n-4), n>4. %F A003729 G.f. x*(11-33*x+18*x^2-x^3)/(1-19*x+41*x^2-19*x^3+x^4) . [From _R. J. Mathar_, Mar 11 2010] %t A003729 Rest[CoefficientList[Series[x (11-33x+18x^2-x^3)/(1-19x+41x^2- 19x^3+ x^4), {x,0,20}],x]] (* or *) LinearRecurrence[{19,-41,19,-1},{11,176,2911,48301},20] (* _Harvey P. Dale_, Jul 16 2011 *) %K A003729 nonn,easy %O A003729 1,1 %A A003729 _Frans J. Faase_