cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003824 Numbers that are the sum of two 4th powers in more than one way (primitive solutions).

This page as a plain text file.
%I A003824 #46 Feb 16 2025 08:32:27
%S A003824 635318657,3262811042,8657437697,68899596497,86409838577,160961094577,
%T A003824 2094447251857,4231525221377,26033514998417,37860330087137,
%U A003824 61206381799697,76773963505537,109737827061041,155974778565937
%N A003824 Numbers that are the sum of two 4th powers in more than one way (primitive solutions).
%C A003824 The prime divisors of elements of {a(n)} all appear to be in A045390. - _David W. Wilson_, May 28 2010
%C A003824 Conjecture: a(n) is congruent to 1,2,10 or 17 mod 24. - _Mason Korb_, Oct 07 2018
%C A003824 Wells selected a(1), with only about 12 other 9-digit numbers, for his Interesting Numbers book. - _Peter Munn_, May 14 2023
%C A003824 Dickson (1923) credited Euler with discovering 635318657 as a term, while Leech (1957) proved that it is the least term. - _Amiram Eldar_, May 14 2023
%D A003824 L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 644-7, Chelsea NY 1923.
%D A003824 R. K. Guy, Unsolved Problems in Number Theory, D1.
%D A003824 David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, p. 191.
%H A003824 D. Wilson, <a href="/A003824/b003824.txt">Table of n, a(n) for n = 1..516</a> [The b-file was computed from Bernstein's list]
%H A003824 D. J. Bernstein, <a href="http://cr.yp.to/sortedsums/two4.1000000">List of 516 primitive solutions p^4 + q^4 = r^4 + s^4 = a(n)</a>
%H A003824 D. J. Bernstein, <a href="http://pobox.com/~djb/papers/sortedsums.dvi">Enumerating solutions to p(a) + q(b) = r(c) + s(d)</a>
%H A003824 D. J. Bernstein, <a href="http://cr.yp.to/sortedsums.html">sortedsums</a> (contains software for computing this and related sequences)
%H A003824 Leonhard Euler, <a href="https://scholarlycommons.pacific.edu/euler-works/716/">Resolutio formulae diophanteae ab(maa+nbb)=cd(mcc+ndd) per numeros rationales</a>, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, Vol. 13 (1802), pp. 45-63. See p. 47.
%H A003824 John Leech, <a href="http://dx.doi.org/10.1017/S0305004100032850">Some solutions of Diophantine equations</a>, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
%H A003824 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_103.htm">Puzzle 103. N = a^4+b^4 = c^4+d^4</a>, The Prime Puzzles and Problems Connection.
%H A003824 E. Rosenstiel et al., <a href="http://www.cix.co.uk/~rosenstiel/cubes/welcome.htm">The Four Least Solutions in Distinct Positive Integers of the Diophantine Equation s = x^3 + y^3 = z^3 + w^3 = u^3 + v^3 = m^3 + n^3</a>, Instit. of Mathem. and Its Applic. Bull. Jul 27 (pp. 155-157) 1991.
%H A003824 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiophantineEquation4thPowers.html">Diophantine equations, 4th powers</a>
%Y A003824 Cf. A018786.
%K A003824 nonn
%O A003824 1,1
%A A003824 _N. J. A. Sloane_
%E A003824 More terms from _David W. Wilson_, Aug 15 1996