This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003824 #46 Feb 16 2025 08:32:27 %S A003824 635318657,3262811042,8657437697,68899596497,86409838577,160961094577, %T A003824 2094447251857,4231525221377,26033514998417,37860330087137, %U A003824 61206381799697,76773963505537,109737827061041,155974778565937 %N A003824 Numbers that are the sum of two 4th powers in more than one way (primitive solutions). %C A003824 The prime divisors of elements of {a(n)} all appear to be in A045390. - _David W. Wilson_, May 28 2010 %C A003824 Conjecture: a(n) is congruent to 1,2,10 or 17 mod 24. - _Mason Korb_, Oct 07 2018 %C A003824 Wells selected a(1), with only about 12 other 9-digit numbers, for his Interesting Numbers book. - _Peter Munn_, May 14 2023 %C A003824 Dickson (1923) credited Euler with discovering 635318657 as a term, while Leech (1957) proved that it is the least term. - _Amiram Eldar_, May 14 2023 %D A003824 L. E. Dickson, History of The Theory of Numbers, Vol. 2 pp. 644-7, Chelsea NY 1923. %D A003824 R. K. Guy, Unsolved Problems in Number Theory, D1. %D A003824 David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, p. 191. %H A003824 D. Wilson, <a href="/A003824/b003824.txt">Table of n, a(n) for n = 1..516</a> [The b-file was computed from Bernstein's list] %H A003824 D. J. Bernstein, <a href="http://cr.yp.to/sortedsums/two4.1000000">List of 516 primitive solutions p^4 + q^4 = r^4 + s^4 = a(n)</a> %H A003824 D. J. Bernstein, <a href="http://pobox.com/~djb/papers/sortedsums.dvi">Enumerating solutions to p(a) + q(b) = r(c) + s(d)</a> %H A003824 D. J. Bernstein, <a href="http://cr.yp.to/sortedsums.html">sortedsums</a> (contains software for computing this and related sequences) %H A003824 Leonhard Euler, <a href="https://scholarlycommons.pacific.edu/euler-works/716/">Resolutio formulae diophanteae ab(maa+nbb)=cd(mcc+ndd) per numeros rationales</a>, Nova Acta Academiae Scientiarum Imperialis Petropolitanae, Vol. 13 (1802), pp. 45-63. See p. 47. %H A003824 John Leech, <a href="http://dx.doi.org/10.1017/S0305004100032850">Some solutions of Diophantine equations</a>, Proc. Camb. Phil. Soc., 53 (1957), 778-780. %H A003824 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_103.htm">Puzzle 103. N = a^4+b^4 = c^4+d^4</a>, The Prime Puzzles and Problems Connection. %H A003824 E. Rosenstiel et al., <a href="http://www.cix.co.uk/~rosenstiel/cubes/welcome.htm">The Four Least Solutions in Distinct Positive Integers of the Diophantine Equation s = x^3 + y^3 = z^3 + w^3 = u^3 + v^3 = m^3 + n^3</a>, Instit. of Mathem. and Its Applic. Bull. Jul 27 (pp. 155-157) 1991. %H A003824 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiophantineEquation4thPowers.html">Diophantine equations, 4th powers</a> %Y A003824 Cf. A018786. %K A003824 nonn %O A003824 1,1 %A A003824 _N. J. A. Sloane_ %E A003824 More terms from _David W. Wilson_, Aug 15 1996