cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003835 Order of universal Chevalley group D_n (8).

This page as a plain text file.
%I A003835 #19 Jul 08 2025 07:50:27
%S A003835 7,254016,34558531338240,19031213036231093492121600,
%T A003835 42863636354909175368011800612065142374400,
%U A003835 395357821818670720302212111102866352228895870285434270515200
%N A003835 Order of universal Chevalley group D_n (8).
%D A003835 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
%D A003835 H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
%H A003835 <a href="/index/Gre#groups">Index entries for sequences related to groups</a>.
%F A003835 a(n) = D(8,n) where D(q,n) is defined in A003830. - _Sean A. Irvine_, Sep 17 2015
%F A003835 a(n) ~ c * 8^(n*(2*n-1)), where c = Product_{k>=1} (1 - 1/8^(2*k)) = 0.984130860306... . - _Amiram Eldar_, Jul 08 2025
%t A003835 d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[8, n], {n, 1, 8}] (* _Amiram Eldar_, Jun 24 2025 *)
%Y A003835 Cf. A003830, A003831, A003832, A003834, A003836.
%K A003835 nonn,easy
%O A003835 1,1
%A A003835 _N. J. A. Sloane_