This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003869 #34 Sep 23 2024 10:38:46 %S A003869 1,1,4,4,5,5,6 %N A003869 Degrees of irreducible representations of symmetric group S_5. %C A003869 All 7 terms of this finite sequence are shown. %D A003869 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites]. %t A003869 h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; %t A003869 g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]]; %t A003869 T[n_] := g[n, n, {}]; %t A003869 Sort[T[5]] (* _Jean-François Alcover_, Sep 22 2024, after _Alois P. Heinz_ in A060240 *) %o A003869 (Magma) // See A003875 for Magma code %o A003869 (GAP) A003869 := List(Irr(CharacterTable("S5")), chi->chi[1]);; Sort(A003869); # _Eric M. Schmidt_, Jul 18 2012 %Y A003869 Row n=5 of A060240. %Y A003869 Cf. A003870, A003871, A003872, A003873. %K A003869 nonn,fini,full %O A003869 1,3 %A A003869 _N. J. A. Sloane_