This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003875 #20 Sep 23 2024 07:51:02 %S A003875 1,1,10,10,44,44,45,45,110,110,120,120,132,132,165,165,210,210,231, %T A003875 231,252,330,330,385,385,462,462,550,550,594,594,660,660,693,693,825, %U A003875 825,924,924,990,990,990,990,1100,1100,1155,1155,1188,1232,1232,1320,1320,1540,1540,2310,2310 %N A003875 Degrees of irreducible representations of symmetric group S_11. %C A003875 All 56 terms of this finite sequence are shown. %D A003875 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites]. %t A003875 h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; %t A003875 g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]]; %t A003875 T[n_] := g[n, n, {}]; %t A003875 Sort[T[11]] (* _Jean-François Alcover_, Sep 23 2024, after _Alois P. Heinz_ in A060240 *) %o A003875 (Magma) t1 := CharacterTable(SymmetricGroup(11)); [Degree(t1[i]) : i in [1 .. #t1]]; %o A003875 (GAP) A003875 := List(Irr(CharacterTable("S11")), chi->chi[1]);; Sort(A003875); # _Eric M. Schmidt_, Jul 18 2012 %Y A003875 Row n=11 of A060240. %K A003875 nonn,fini,full %O A003875 1,3 %A A003875 _N. J. A. Sloane_