This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003932 #25 Jun 24 2025 05:49:21 %S A003932 1451520,9170703360,4106059776000,457002000000000,546914437209907200, %T A003932 9077005607176765440,108051462804999168000,7338585441586912128000, %U A003932 245593958671812227742720,19266960106724096212992000,68852034247000426560552960,712225595693024258315904000 %N A003932 Order of universal Chevalley group B_3(q), q = prime power. %D A003932 J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi. %D A003932 H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131. %H A003932 Robin Visser, <a href="/A003932/b003932.txt">Table of n, a(n) for n = 1..10000</a> %H A003932 <a href="/index/Gre#groups">Index entries for sequences related to groups</a>. %F A003932 a(n) = B(A000961(n + 1), 3) where B(q,n) is defined in A003920. - _Sean A. Irvine_, Sep 22 2015 %t A003932 B[q_, n_] := q^(n^2) * Product[q^(2*k) - 1, {k, 1, n}]; Table[B[q, 3], {q, Select[Range[20], PrimePowerQ]}] (* _Amiram Eldar_, Jun 24 2025 *) %o A003932 (Magma) [#SymplecticGroup(6, q) : q in [2..50] | IsPrimePower(q)]; // _Robin Visser_, Aug 07 2023 %Y A003932 Cf. A000961, A003920, A003931, A003933, A003934, A003935, A003936, A003937. %K A003932 nonn,easy %O A003932 1,1 %A A003932 _N. J. A. Sloane_ %E A003932 More terms from _Robin Visser_, Aug 07 2023