This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003949 #68 May 03 2025 18:04:36 %S A003949 1,7,42,252,1512,9072,54432,326592,1959552,11757312,70543872, %T A003949 423263232,2539579392,15237476352,91424858112,548549148672, %U A003949 3291294892032,19747769352192,118486616113152,710919696678912,4265518180073472,25593109080440832,153558654482644992 %N A003949 Expansion of g.f. (1+x)/(1-6*x). %C A003949 Coordination sequence for infinite tree with valency 7. %C A003949 For n >= 1, a(n+1) is equal to the number of functions f:{1,2,...,n+1}->{1,2,3,4,5,6,7} such that for fixed, different x_1, x_2,...,x_n in {1,2,...,n+1} and fixed y_1, y_2,...,y_n in {1,2,3,4,5,6,7} we have f(x_i)<>y_i, (i=1,2,...,n). - _Milan Janjic_, May 10 2007 %C A003949 For n >= 1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,2,3,5,6} with no two adjacent letters identical. - _Milan Janjic_, Jan 31 2015 %H A003949 Vincenzo Librandi, <a href="/A003949/b003949.txt">Table of n, a(n) for n = 0..1000</a> %H A003949 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=308">Encyclopedia of Combinatorial Structures 308</a> %H A003949 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a> %H A003949 <a href="/index/Di#divseq">Index to divisibility sequences</a> %H A003949 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (6). %H A003949 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A003949 G.f.: (1+x)/(1-6*x). %F A003949 a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 5. - _Philippe Deléham_, Jul 10 2005 %F A003949 a(0)=1; for n > 0, a(n) = 7*6^(n-1). - _Vincenzo Librandi_, Nov 18 2010 %F A003949 a(0)=1, a(1)=7, a(n) = 6*a(n-1). - _Vincenzo Librandi_, Dec 10 2012 %F A003949 E.g.f.: (7*exp(6*x) - 1)/6. - _G. C. Greubel_, Sep 24 2019 %p A003949 k:=7; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # modified by _G. C. Greubel_, Sep 24 2019 %t A003949 q = 7; Join[{a = 1}, Table[If[n != 0, a = q*a - a, a = q*a], {n, 0, 25}]] (* or *) Join[{1}, 7*6^Range[0, 25]] (* _Vladimir Joseph Stephan Orlovsky_, Jul 11 2011 *) %t A003949 CoefficientList[Series[(1+x)/(1-6*x), {x, 0, 30}], x] (* _Vincenzo Librandi_, Dec 10 2012 *) %t A003949 LinearRecurrence[{6},{1,7},30] (* or *) Join[{1},NestList[6#&,7,30]] (* _Harvey P. Dale_, May 03 2025 *) %o A003949 (PARI) a(n)=if(n,7*6^(n-1),1) \\ _Charles R Greathouse IV_, Mar 22 2016 %o A003949 (Magma) k:=7; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // _G. C. Greubel_, Sep 24 2019 %o A003949 (Magma) R<x>:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (1+x)/(1-6*x))); // _Marius A. Burtea_, Jan 20 2020 %o A003949 (Sage) k=7; [1]+[k*(k-1)^(n-1) for n in (1..25)] # _G. C. Greubel_, Sep 24 2019 %o A003949 (GAP) k:=7;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # _G. C. Greubel_, Sep 24 2019 %Y A003949 Cf. A003947, A003948, A003950, A003951. %K A003949 nonn,easy %O A003949 0,2 %A A003949 _N. J. A. Sloane_ %E A003949 Edited by _N. J. A. Sloane_, Dec 04 2009