This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003952 #79 Sep 08 2022 08:44:32 %S A003952 1,10,90,810,7290,65610,590490,5314410,47829690,430467210,3874204890, %T A003952 34867844010,313810596090,2824295364810,25418658283290, %U A003952 228767924549610,2058911320946490,18530201888518410,166771816996665690,1500946352969991210,13508517176729920890 %N A003952 Expansion of g.f.: (1+x)/(1-9*x). %C A003952 Coordination sequence for infinite tree with valency 10. %C A003952 The n-th term of the coordination sequence of the infinite tree with valency 2m is the same as the number of reduced words of size n in the free group on m generators. In the five sequences A003946, A003948, A003950, A003952, A003954 m is 2, 3, 4, 5, 6 . - Avi Peretz (njk(AT)netvision.net.il), Feb 23 2001 and Ola Veshta (olaveshta(AT)my-deja.com), Mar 30 2001 %C A003952 Except 1, all terms are in A033583. - _Vincenzo Librandi_, May 26 2014 %C A003952 For n>=1, a(n) equals the number of words of length n on alphabet {0,1,...,9} with no two adjacent letters identical. - _Milan Janjic_, Jan 31 2015 [Corrected by _David Nacin_, May 31 2017] %C A003952 a(n) is the number of sequences over the alphabet {0,1,...,9} of length n such that no two consecutive terms have distance 5. - _David Nacin_, May 31 2017 %H A003952 Vincenzo Librandi, <a href="/A003952/b003952.txt">Table of n, a(n) for n = 0..1000</a> %H A003952 INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=311">Encyclopedia of Combinatorial Structures 311</a> %H A003952 <a href="/index/Di#divseq">Index to divisibility sequences</a> %H A003952 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (9). %H A003952 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A003952 a(n) = (10*9^n - 0^n)/9. Binomial transform is A000042. - _Paul Barry_, Jan 29 2004 %F A003952 G.f.: (1+x)/(1-9*x). - _Philippe Deléham_, Jan 31 2004 %F A003952 a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 8. - _Philippe Deléham_, Jul 10 2005 %F A003952 The Hankel transform of this sequence is: [1,-10,0,0,0,0,0,0,0,...]. - _Philippe Deléham_, Nov 21 2007 %F A003952 E.g.f.: (10*exp(9*x) - 1)/9. - _G. C. Greubel_, Sep 24 2019 %p A003952 k:= 10; seq(`if`(n = 0, 1, k*(k-1)^(n-1)), n = 0..20); # modified by _G. C. Greubel_, Sep 24 2019 %t A003952 Join[{1}, 10*9^Range[0, 25]] (* _Vladimir Joseph Stephan Orlovsky_, Jul 11 2011 *) %t A003952 Join[{1},NestList[9#&,10,20]] (* _Harvey P. Dale_, Sep 01 2021 *) %o A003952 (Magma) [(10*9^n-0^n)/9: n in [0..20] ]; // _Vincenzo Librandi_, Aug 19 2011 %o A003952 (PARI) a(n)=10*9^n\9 \\ _Charles R Greathouse IV_, Sep 08 2011 %o A003952 (Sage) k=10; [1]+[k*(k-1)^(n-1) for n in (1..20)] # _G. C. Greubel_, Sep 24 2019 %o A003952 (GAP) k:=10;; Concatenation([1], List([1..20], n-> k*(k-1)^(n-1) )); # _G. C. Greubel_, Sep 24 2019 %Y A003952 Cf. A003949, A003950, A003951. %K A003952 nonn,easy %O A003952 0,2 %A A003952 _N. J. A. Sloane_, Mar 15 1996 %E A003952 Edited by _N. J. A. Sloane_, Dec 04 2009