This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A003964 #34 Sep 19 2023 01:44:14 %S A003964 1,2,3,4,5,6,7,8,9,10,11,12,15,14,15,16,22,18,30,20,21,22,42,24,25,30, %T A003964 27,28,56,30,77,32,33,44,35,36,101,60,45,40,135,42,176,44,45,84,231, %U A003964 48,49,50,66,60,297,54,55,56,90,112,385,60,490,154,63,64,75,66,627,88,126,70 %N A003964 Fully multiplicative with a(prime(k)) = partition(k+1). %H A003964 Amiram Eldar, <a href="/A003964/b003964.txt">Table of n, a(n) for n = 1..10000</a> %F A003964 If n = Product p(k)^e(k) then a(n) = Product partition(k+1)^e(k). %F A003964 Multiplicative with a(p^e) = A000041(A000720(p)+1)^e. - _David W. Wilson_, Aug 01 2001 %F A003964 Sum_{n>=1} 1/a(n) = 1 / Product_{k>=2} (1 - 1/A000041(k)) = 6.16770060042144081793... . - _Amiram Eldar_, Sep 19 2023 %p A003964 with(numtheory): with(combinat): %p A003964 a:= n-> mul(numbpart(pi(i[1])+1)^i[2], i=ifactors(n)[2]): %p A003964 seq(a(n), n=1..82); # _Alois P. Heinz_, Jan 14 2021 %t A003964 f[p_, e_] := PartitionsP[PrimePi[p] + 1]^e; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Aug 29 2019 *) %o A003964 (PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = numbpart(primepi(f[k, 1])+1)); factorback(f); \\ _Michel Marcus_, Jan 14 2021 %Y A003964 Cf. A000041, A000720, A299200. %K A003964 nonn,look,mult %O A003964 1,2 %A A003964 _Marc LeBrun_, _N. J. A. Sloane_ %E A003964 Description corrected and sequence extended by _David W. Wilson_