A003980 Möbius transform of A003965.
1, 1, 2, 2, 4, 2, 7, 4, 6, 4, 12, 4, 20, 7, 8, 8, 33, 6, 54, 8, 14, 12, 88, 8, 20, 20, 18, 14, 143, 8, 232, 16, 24, 33, 28, 12, 376, 54, 40, 16, 609, 14, 986, 24, 24, 88, 1596, 16, 56, 20, 66, 40, 2583, 18, 48, 28, 108, 143, 4180, 16, 6764, 232, 42, 32, 80, 24, 10945, 66
Offset: 1
Links
- N. J. A. Sloane, Transforms.
Programs
-
Mathematica
a[n_] := If[n == 1, 1, Product[{p, e} = pe; q = Fibonacci[PrimePi[p] + 2]; (q-1) q^(e-1), {pe, FactorInteger[n]}]]; Array[a, 100] (* Jean-François Alcover, Sep 29 2020 *)
-
PARI
a(n) = {my(f = factor(n), p = f[, 1], e = f[, 2], q); prod(i = 1, #p, q = fibonacci(primepi(p[i])+2); (q-1)*q^(e[i]-1));} \\ Amiram Eldar, Sep 14 2023
Formula
Multiplicative with a(p^e) = (q-1)q^(e-1) were q = Fibonacci(pi(p)+2) = A000045(A000720(p)+2). - David W. Wilson, Sep 01 2001
Sum_{n>=1} 1/a(n) = Product_{k>=3} (1 + Fibonacci(k)/(Fibonacci(k)-1)^2) = 9.955734312016908009501... . - Amiram Eldar, Sep 14 2023
Extensions
More terms from David W. Wilson, Aug 29 2001