cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004025 Theta series of b.c.c. lattice with respect to long edge.

This page as a plain text file.
%I A004025 M0928 #38 Feb 16 2025 08:32:28
%S A004025 2,4,0,0,8,8,0,0,10,8,0,0,8,16,0,0,16,12,0,0,16,8,0,0,10,24,0,0,24,16,
%T A004025 0,0,16,16,0,0,8,24,0,0,32,16,0,0,24,16,0,0,18,28,0,0,24,32,0,0,16,8,
%U A004025 0,0,24,32,0,0,32,32,0,0,32,16,0,0,16,40,0,0,32
%N A004025 Theta series of b.c.c. lattice with respect to long edge.
%C A004025 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C A004025 The body-centered cubic (b.c.c. also known as D3*) lattice is the set of all triples [a, b, c] where the entries are all integers or all one half an odd integer. A long edge is centered at a triple with two integer entries and the remaining entry is one half an odd integer. - _Michael Somos_, May 31 2012
%D A004025 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A004025 G. C. Greubel, <a href="/A004025/b004025.txt">Table of n, a(n) for n = 1..1000</a>
%H A004025 N. J. A. Sloane and B. K. Teo, <a href="http://dx.doi.org/10.1063/1.449551">Theta series and magic numbers for close-packed spherical clusters</a>, J. Chem. Phys. 83 (1985) 6520-6534.
%H A004025 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A004025 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%H A004025 <a href="/index/Ba#bcc">Index entries for sequences related to b.c.c. lattice</a>
%F A004025 From _Michael Somos_, May 31 2012: (Start)
%F A004025 Expansion of 2 * x * phi(x) * psi(x^4)^2 = 2 * x * psi(-x^2)^4 / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.
%F A004025 Expansion of 2 * eta(q^2)^5 * eta(q^8)^4 / (eta(q)^2 * eta(q^4)^4) in powers of q.
%F A004025 a(4*n) = a(4*n + 3) = 0. a(n) = 2 * A045836(n). a(4*n + 1) = 2 * A045834(n). a(4*n + 2) = 4 * A045828(n). (End)
%e A004025 2*q + 4*q^2 + 8*q^5 + 8*q^6 + 10*q^9 + 8*q^10 + 8*q^13 + 16*q^14 + 16*q^17 + ...
%t A004025 a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[2*QPochhammer[x^2+A]^5 * (QPochhammer[x^8+A]^4 / (QPochhammer[x+A]^2*QPochhammer[x^4+A]^4)), {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Nov 05 2015, adapted from PARI *)
%o A004025 (PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( 2 * eta(x^2 + A)^5 * eta(x^8 + A)^4 / (eta(x + A)^2 * eta(x^4 + A)^4), n))} /* _Michael Somos_, May 31 2012 */
%Y A004025 Cf. A045828, A045834, A045836.
%K A004025 nonn,easy
%O A004025 1,1
%A A004025 _N. J. A. Sloane_