This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004065 #28 Aug 28 2024 09:37:31 %S A004065 1,1,1,1,1,2,2,2,1,3,5,7,5,12,12,12,1,4,9,16,14,42,54,66,14,56,110, %T A004065 176,110,286,286,286,1,5,14,30,28,100,154,220,42,198,462,858,572,1716, %U A004065 2002,2288,42,240,702,1560,1274,4550,6552,8840,1274,5824,12376 %N A004065 Define predecessors of n, P(n), to consist of numbers whose binary representation is obtained from that of n by replacing 10 with 01 or changing a final 1 to a 0; then a(0)=1, a(n) = Sum a(P(n)), n>0. %H A004065 Alois P. Heinz, <a href="/A004065/b004065.txt">Table of n, a(n) for n = 0..8191</a> %F A004065 a(2^n-1) = A003121(n). %e A004065 E.g. 201 = 11001001, so P(201) = {169, 197, 200}, a(201) = a(169) + a(197) + a(200). %p A004065 P:= proc(n) local h, i, m, s, t; %p A004065 t:= irem(n, 2, 'm'); %p A004065 s:= `if`(t=1, {n-1}, {}); %p A004065 for i from 0 while m>0 do h:= irem(m, 2, 'm'); %p A004065 if h=1 and t=0 then s:= s union {n- 2^i} fi; t:=h %p A004065 od; s %p A004065 end: %p A004065 a:= proc(n) a(n):= `if`(n=0, 1, add(a(k), k=P(n))) end: %p A004065 seq (a(n), n=0..80); # _Alois P. Heinz_, Jul 06 2012 %t A004065 P[n_] := Module[{h, i, m, s, t}, {m, t} = QuotientRemainder[n, 2]; s = If[t == 1, {n-1}, {}]; For[i = 0, m>0, i++, {m, h} = QuotientRemainder[m, 2]; If[h == 1 && t == 0, s = s ~Union~ {n-2^i}]; t = h]; s]; a[n_] := a[n] = If[n == 0, 1, Sum[a[k], {k, P[n]}]]; Table[a[n], {n, 0, 80}] (* _Jean-François Alcover_, Jun 11 2015, after _Alois P. Heinz_ *) %Y A004065 Cf. A003121. %K A004065 nonn,base %O A004065 0,6 %A A004065 _David W. Wilson_, Jan 29 2000 %E A004065 Entry revised by _N. J. A. Sloane_, Jun 14 2012