cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004070 Table of Whitney numbers W(n,k) read by antidiagonals, where W(n,k) is maximal number of pieces into which n-space is sliced by k hyperplanes, n >= 0, k >= 0.

This page as a plain text file.
%I A004070 #85 Jan 08 2025 09:27:46
%S A004070 1,1,1,1,2,1,1,2,3,1,1,2,4,4,1,1,2,4,7,5,1,1,2,4,8,11,6,1,1,2,4,8,15,
%T A004070 16,7,1,1,2,4,8,16,26,22,8,1,1,2,4,8,16,31,42,29,9,1,1,2,4,8,16,32,57,
%U A004070 64,37,10,1,1,2,4,8,16,32,63,99,93,46,11,1,1,2,4,8,16,32,64,120,163
%N A004070 Table of Whitney numbers W(n,k) read by antidiagonals, where W(n,k) is maximal number of pieces into which n-space is sliced by k hyperplanes, n >= 0, k >= 0.
%C A004070 As a number triangle, this is given by T(n,k)=sum{j=0..n, C(n,j)(-1)^(n-j)sum{i=0..j, C(j+k,i-k)}}. - _Paul Barry_, Aug 23 2004
%C A004070 As a number triangle, this is the Riordan array (1/(1-x), x(1+x)) with T(n,k)=sum{i=0..n, binomial(k,i-k)}. Diagonal sums are then A023434(n+1). - _Paul Barry_, Feb 16 2005
%C A004070 Form partial sums across rows of square array of binomial coefficients A026729; see also A008949. - _Philippe Deléham_, Aug 28 2005
%C A004070 Square array A026729 -> Partial sums across rows
%C A004070 1 0 0 0 0 0 0 . . . . 1 1 1 1 1 1 1 . . . . . .
%C A004070 1 1 0 0 0 0 0 . . . . 1 2 2 2 2 2 2 . . . . . .
%C A004070 1 2 1 0 0 0 0 . . . . 1 3 4 4 4 4 4 . . . . . .
%C A004070 1 3 3 1 0 0 0 . . . . 1 4 7 8 8 8 8 . . . . . .
%C A004070 For other Whitney numbers see A007799.
%C A004070 W(n,k) is the number of length k binary sequences containing no more than n 1's. - _Geoffrey Critzer_, Mar 15 2010
%C A004070 From _Emeric Deutsch_, Jun 15 2010: (Start)
%C A004070 Viewed as a number triangle, T(n,k) is the number of internal nodes of the Fibonacci tree of order n+2 at level k. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.
%C A004070 (End)
%C A004070 Named after the American mathematician Hassler Whitney (1907-1989). - _Amiram Eldar_, Jun 13 2021
%D A004070 Donald E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
%H A004070 Gustav Burosch, Hans-Dietrich O.F. Gronau, Jean-Marie Laborde and Ingo Warnke, <a href="https://doi.org/10.1016/0012-365X(94)00256-I">On posets of m-ary words</a>, Discrete Math., Vol. 152, No. 1-3 (1996), pp. 69-91. MR1388633 (97e:06002)
%H A004070 Matteo Cervetti and Luca Ferrari, <a href="https://arxiv.org/abs/2009.01024">Pattern avoidance in the matching pattern poset</a>, arXiv:2009.01024 [math.CO], 2020.
%H A004070 Matteo Cervetti and Luca Ferrari, <a href="https://doi.org/10.1007/s00026-022-00596-1">Enumeration of Some Classes of Pattern Avoiding Matchings, with a Glimpse into the Matching Pattern Poset</a>, Annals of Combinatorics (2022).
%H A004070 Richard K. Guy, <a href="/A003271/a003271.pdf">Letter to N. J. A. Sloane, Apr 1975</a>.
%H A004070 Yasuichi Horibe, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/20-2/horibe.pdf">An entropy view of Fibonacci trees</a>, Fibonacci Quarterly, Vol. 20, No. 2 (1982), pp. 168-178.
%H A004070 Robin Pemantle and Mark C. Wilson, <a href="https://doi.org/10.1137/050643866">Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions</a>, SIAM Rev., Vol. 50, No. 2 (2008), pp. 199-272. See p. 233.
%F A004070 W(n, k) = Sum_{i=0..n} binomial(k, i). - _Bill Gosper_
%F A004070 W(n, k) = if k=0 or n=0 then 1 else W(n, k-1)+W(n-1, k-1). - _David Broadhurst_, Jan 05 2000
%F A004070 The table W(n,k) = A000012 * A007318(transform), where A000012 = (1; 1,1; 1,1,1; ...). - _Gary W. Adamson_, Nov 15 2007
%F A004070 E.g.f. for row n: (1 + x + x^2/2! + ... + x^n/n!)* exp(x). - _Geoffrey Critzer_, Mar 15 2010
%F A004070 G.f.: 1 / (1 - x - x*y*(1 - x^2)) = Sum_{0 <= k <= n} x^n * y^k * T(n, k). - _Michael Somos_, May 31 2016
%F A004070 W(n, n) = 2^n. - _Michael Somos_, May 31 2016
%F A004070 From _Jianing Song_, May 30 2022: (Start)
%F A004070 T(n, 0) = T(n, n) = 1 for n >= 0; T(n, k) = T(n-1, k-1) + T(n-2, k-1) for k=1, 2, ..., n-1, n >= 2.
%F A004070 T(n, k) = Sum_{m=0..n-k} binomial(k, m).
%F A004070 T(n,k) = 2^k for 0 <= k <= floor(n/2). (End)
%e A004070 Table W(n,k) begins:
%e A004070   1 1 1 1  1  1  1 ...
%e A004070   1 2 3 4  5  6  7 ...
%e A004070   1 2 4 7 11 16 22 ...
%e A004070   1 2 4 8 15 26 42 ...
%e A004070 W(2,4) = 11 because there are 11 length 4 binary sequences containing no more than 2 1's: {0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1, 1}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1, 1, 0, 0}. - _Geoffrey Critzer_, Mar 15 2010
%e A004070 Table T(n, k) begins:
%e A004070   1
%e A004070   1  1
%e A004070   1  2  1
%e A004070   1  2  3  1
%e A004070   1  2  4  4  1
%e A004070   1  2  4  7  5  1
%e A004070   1  2  4  8 11  6  1
%e A004070 ...
%t A004070 Transpose[ Table[Table[Sum[Binomial[n, k], {k, 0, m}], {m, 0, 15}], {n, 0, 15}]] // Grid (* _Geoffrey Critzer_, Mar 15 2010 *)
%t A004070 T[ n_, k_] := Sum[ Binomial[n, j] (-1)^(n - j) Sum[ Binomial[j + k, i - k], {i, 0, j}], {j, 0, n}]; (* _Michael Somos_, May 31 2016 *)
%o A004070 (PARI) /* array read by antidiagonals up coordinate index functions */
%o A004070 t1(n) = binomial(floor(3/2 + sqrt(2+2*n)), 2) - (n+1); /* A025581 */
%o A004070 t2(n) = n - binomial(floor(1/2 + sqrt(2+2*n)), 2); /* A002262 */
%o A004070 /* define the sequence array function for A004070 */
%o A004070 W(n, k) = sum(i=0, n, binomial(k, i));
%o A004070 /* visual check ( origin 0,0 ) */
%o A004070 printp(matrix(7, 7, n, k, W(n-1, k-1)));
%o A004070 /* print the sequence entries by antidiagonals going up ( origin 0,0 ) */
%o A004070 print1("S A004070 "); for(n=0, 32, print1(W(t1(n), t2(n))","));
%o A004070 print1("T A004070 "); for(n=33, 61, print1(W(t1(n), t2(n))","));
%o A004070 print1("U A004070 "); for(n=62, 86, print1(W(t1(n), t2(n))",")); /* _Michael Somos_, Apr 28 2000 */
%o A004070 (PARI) T(n, k)=sum(m=0, n-k, binomial(k, m)) \\ _Jianing Song_, May 30 2022
%Y A004070 Cf. A007799. As a triangle, mirror A052509.
%Y A004070 Rows converge to powers of two (A000079). Subdiagonals include A000225, A000295, A002662, A002663, A002664, A035038, A035039, A035040, A035041, A035042. Antidiagonal sums are A000071.
%Y A004070 Rows are: A000012, A000027, A000124, A000125, A000127, A006261, A008859, A008860, A008861, A008862, A008863.
%Y A004070 Cf. A178522, A178524.
%K A004070 tabl,nonn,easy,nice
%O A004070 0,5
%A A004070 _N. J. A. Sloane_
%E A004070 More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000