This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004080 #82 Feb 16 2025 08:32:28 %S A004080 0,1,4,11,31,83,227,616,1674,4550,12367,33617,91380,248397,675214, %T A004080 1835421,4989191,13562027,36865412,100210581,272400600,740461601, %U A004080 2012783315,5471312310,14872568831,40427833596,109894245429,298723530401,812014744422 %N A004080 Least k such that H(k) >= n, where H(k) is the harmonic number Sum_{i=1..k} 1/i. %D A004080 Bruno Rizzi and Cristina Scagliarini: I numeri armonici. Periodico di matematiche, "Mathesis", pp. 17-58, 1986, numbers 1-2. [From _Vincenzo Librandi_, Jan 05 2009] %D A004080 W. Sierpiński, Sur les décompositions de nombres rationnels, Oeuvres Choisies, Académie Polonaise des Sciences, Warsaw, Poland, 1974, p. 181. %D A004080 N. J. A. Sloane, Illustration for sequence M4299 (=A007340) in The Encyclopedia of Integer Sequences (with Simon Plouffe), Academic Press, 1995. %H A004080 T. D. Noe, <a href="/A004080/b004080.txt">Table of n, a(n) for n=0..100</a> (using Hickerson's formula in A002387) %H A004080 John V. Baxley, <a href="http://www.jstor.org/stable/2691241">Euler's constant, Taylor's formula, and slowly converging series</a>, Math. Mag. 65 (1992), 302-313. %H A004080 R. P. Boas, Jr. and J. W. Wrench, Jr., <a href="http://www.jstor.org/stable/2316476">Partial sums of the harmonic series</a>, Amer. Math. Monthly, 78 (1971), 864-870. %H A004080 Keneth Adrian Dagal, <a href="http://arxiv.org/abs/1309.3527">A Lower Bound for tau(n) for k-Multiperfect Number</a>, arXiv:1309.3527 [math.NT], 2013. %H A004080 J. Sondow and E. W. Weisstein, <a href="https://mathworld.wolfram.com/HarmonicNumber.html">MathWorld: Harmonic Number</a> %H A004080 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HarmonicSeries.html">Harmonic Series</a> %H A004080 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/High-WaterMark.html">High-Water Mark</a> %F A004080 Limit_{n->oo} a(n+1)/a(n) = exp(1). - _Sébastien Dumortier_, Jun 29 2005 %F A004080 a(n) = exp(n - gamma + o(1)). - _Charles R Greathouse IV_, Mar 10 2009 %F A004080 a(n) = A002387(n) for n>1. - _Robert G. Wilson v_, Jun 18 2015 %e A004080 a(2)=4 because 1/1 + 1/2 + 1/3 + 1/4 > 2. %t A004080 aux[0] = 0; Do[aux[n] = Floor[Floor[Sum[1/i, {i, n}]]]; If[aux[n] > aux[n - 1], Print[n]], {n, 1, 14000}] (* _José María Grau Ribas_, Feb 20 2010 *) %t A004080 a[0] = 0; a[1] = 1; a[n_] := k /. FindRoot[ HarmonicNumber[k] == n, {k, Exp[n - EulerGamma]}, WorkingPrecision -> 50] // Ceiling; Table[a[n], {n, 0, 28}] (* _Jean-François Alcover_, Aug 13 2013, after _Charles R Greathouse IV_ *) %o A004080 (PARI) my(t=0, n=0); for(i=0, 10^20, if (i, t+=1./i); if(t>=n, print1(i, ", "); n++)) \\ Thomas Gettys (tpgettys(AT)comcast.net), Jan 21 2007; corrected by _Michel Marcus_, Jan 19 2022 %o A004080 (Haskell) %o A004080 import Data.List (findIndex); import Data.Maybe (fromJust) %o A004080 a004080 n = fromJust $ %o A004080 findIndex (fromIntegral n <=) $ scanl (+) 0 $ map recip [1..] %o A004080 -- _Reinhard Zumkeller_, Jul 13 2014 %Y A004080 Apart from first two terms, same as A002387. %K A004080 nonn,nice %O A004080 0,3 %A A004080 _N. J. A. Sloane_, _Clark Kimberling_ %E A004080 Terms for n >= 13 computed by _Eric W. Weisstein_; corrected by _James R. Buddenhagen_ and _Eric W. Weisstein_, Feb 18 2001 %E A004080 Edited by _Dean Hickerson_, Apr 19 2003 %E A004080 More terms from _Sébastien Dumortier_, Jun 29 2005 %E A004080 a(27) from Thomas Gettys (tpgettys(AT)comcast.net), Dec 05 2006 %E A004080 a(28) from Thomas Gettys (tpgettys(AT)comcast.net), Jan 21 2007 %E A004080 Edited by _Charles R Greathouse IV_, Mar 24 2010