cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004109 Number of connected trivalent (or cubic) labeled graphs with 2n nodes.

This page as a plain text file.
%I A004109 M5345 #36 Aug 28 2024 12:41:51
%S A004109 1,0,1,70,19320,11166120,11543439600,19491385914000,50233275604512000,
%T A004109 187663723374359232000,975937986889287117696000,
%U A004109 6838461558851342749449120000,62856853767402275979616458240000,741099150663748252073618880960000000,10997077750618335243742188527076864000000
%N A004109 Number of connected trivalent (or cubic) labeled graphs with 2n nodes.
%D A004109 R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
%D A004109 R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
%D A004109 R. W. Robinson, Computer print-out, no date. Gives first 29 terms.
%D A004109 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A004109 Andrew Howroyd, <a href="/A004109/b004109.txt">Table of n, a(n) for n = 0..100</a> (terms 1..29 from R. W. Robinson)
%H A004109 Élie de Panafieu, <a href="https://arxiv.org/abs/2408.12459">Asymptotic expansion of regular and connected regular graphs</a>, arXiv:2408.12459 [math.CO], 2024. See p. 13.
%H A004109 R. C. Read, <a href="/A002831/a002831.pdf">Letter to N. J. A. Sloane, Feb 04 1971</a> (gives initial terms of this sequence)
%H A004109 R. W. Robinson, <a href="/A002829/a002829.pdf">Cubic labeled graphs, computer print-out, n.d.</a>
%F A004109 Conjecture: a(n) ~ 2^(n + 1/2) * 3^n * n^(3*n) / exp(3*n+2). - _Vaclav Kotesovec_, Feb 17 2024
%e A004109 From _R. J. Mathar_, Oct 18 2018: (Start)
%e A004109 For n=3, 2*n=6, the A002851(n)=2 graphs have multiplicities of 10 and 60 (sum 70).
%e A004109 For n=4, 2*n=8, the A002851(n)=5 graphs have multiplicities of 3360, 840, 2520, 10080 and 2520, (sum 19320). (The orders of the five Aut-groups are 8!/3360 =12, 8!/840=48, 8!/2520 =16, 8!/10080=4 and 8!/2520=16, i.e., all larger than 1 as indicated in A204328). (End)
%Y A004109 See A002829 for not-necessarily-connected graphs, A002851 for connected unlabeled cases.
%Y A004109 Cf. A324163.
%K A004109 nonn,nice
%O A004109 0,4
%A A004109 _N. J. A. Sloane_
%E A004109 a(0)=1 prepended by _Andrew Howroyd_, Sep 02 2019