cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004136 Additive bases: a(n) is the least integer k such that in the cyclic group Z_k there is a subset of n elements all pairs (of not necessarily distinct elements) of which add up to a different sum (in Z_k).

Original entry on oeis.org

1, 3, 7, 13, 21, 31, 48, 57, 73, 91, 120, 133, 168, 183, 255, 255, 273, 307
Offset: 1

Views

Author

Keywords

Comments

a(n) >= n^2-n+1 by a volume bound. A difference set construction by Singer shows that equality holds when n-1 is a prime power. When n is a prime power, a difference set construction by Bose shows that a(n) <= n^2-1. By computation, equality holds in the latter bound at least for 7, 11, 13 and 16.
From Fausto A. C. Cariboni, Aug 13 2017: (Start)
Lexicographically first basis that yields a(n) for n=15..18:
a(15) = 255 from {0,1,3,7,15,26,31,53,63,98,107,127,140,176,197}
a(16) = 255 from {0,1,3,7,15,26,31,53,63,98,107,127,140,176,197,215}
a(17) = 273 from {0,1,3,7,15,31,63,90,116,127,136,181,194,204,233,238,255}
a(18) = 307 from {0,1,3,21,25,31,68,77,91,170,177,185,196,212,225,257,269,274}
(End)
Such sets are also known as modular Golomb rulers, or circular Golomb rulers. - Andrey Zabolotskiy, Sep 11 2017

Examples

			a(3)=7: the set {0,1,3} is such a subset of Z_7, since 0+0, 0+1, 0+3, 1+1, 1+3 and 3+3 are all distinct in Z_7; also, no such 3-element set exists in any smaller cyclic group.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms and comments from Harri Haanpaa (Harri.Haanpaa(AT)hut.fi), Oct 30 2000
a(15)-a(18) from Fausto A. C. Cariboni, Aug 13 2017