cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004141 Norm of a matrix.

Original entry on oeis.org

1, 2, 8, 48, 256, 1280, 6912, 39424, 212992, 1118208, 6553600, 36765696, 199229440, 1133117440, 6499598336, 36175872000, 200655503360, 1167945891840, 6620826304512, 36681168191488, 212364657950720, 1219998345330688, 6864598984556544, 38958828003262464, 226089827240509440, 1287455960675123200
Offset: 1

Views

Author

Keywords

Comments

Maximum in the row n-1 of the absolute values of the triangle A127674. - R. J. Mathar, Jul 15 2015

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A259868.

Programs

  • Maple
    A := proc(n,k)
        2*n/(n+k)*binomial(n+k,n-k)*2^(2*k-1) ;
    end proc:
    A004141 := proc(n)
        seq(abs(A(n,k)),k=0..n-1) ;
        max(%) ;
    end proc:
    seq(A004141(n),n=1..30) ; # R. J. Mathar, Jul 15 2015
  • Mathematica
    A[n_, k_] := 2n/(n+k) Binomial[n+k, n-k] 2^(2k-1);
    row[n_] := Table[A[n, k], {k, 0, n-1}] // Abs;
    a[n_] := If[n < 3, n, row[n-1] // Max];
    Array[a, 30] (* Jean-François Alcover, Mar 30 2020, from Maple *)

Formula

The scanned page from Kammler and McGlinn (page 843 of the article) gives a fairly explicit way to calculate a(n). - N. J. A. Sloane, Jul 09 2015