A004173 Triangle of coefficients of Euler polynomials E_2n(x) (exponents in decreasing order).
1, 1, -1, 0, 1, -2, 0, 1, 0, 1, -3, 0, 5, 0, -3, 0, 1, -4, 0, 14, 0, -28, 0, 17, 0, 1, -5, 0, 30, 0, -126, 0, 255, 0, -155, 0, 1, -6, 0, 55, 0, -396, 0, 1683, 0, -3410, 0, 2073, 0, 1, -7, 0, 91, 0, -1001, 0, 7293, 0, -31031, 0, 62881, 0, -38227, 0, 1, -8, 0, 140, 0
Offset: 0
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- H. Pan and Z. W. Sun, New identities involving Bernoulli and Euler polynomials, arXiv:math/0407363 [math.NT], 2004.
- Eric Weisstein's World of Mathematics, Euler Polynomial.
Crossrefs
Cf. A060082
Programs
-
Mathematica
Flatten[Table[Reverse @ CoefficientList[EulerE[2n, x], x] , {n, 0, 8}]] (* Jean-François Alcover, Jul 21 2011 *)