This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004197 #69 May 07 2023 08:28:20 %S A004197 0,0,0,0,1,0,0,1,1,0,0,1,2,1,0,0,1,2,2,1,0,0,1,2,3,2,1,0,0,1,2,3,3,2, %T A004197 1,0,0,1,2,3,4,3,2,1,0,0,1,2,3,4,4,3,2,1,0,0,1,2,3,4,5,4,3,2,1,0,0,1, %U A004197 2,3,4,5,5,4,3,2,1,0,0,1,2,3,4,5,6,5,4,3,2,1,0,0,1,2,3,4,5,6,6,5,4,3,2,1,0,0,1,2 %N A004197 Triangle read by rows. T(n, k) = n - k if n - k < k, otherwise k. %C A004197 Table of min(x,y), where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),... %C A004197 Highest power of 6 that divides A036561. - _Fred Daniel Kline_, May 29 2012 %C A004197 Triangle T(n,k) read by rows: T(n,k) = min(k,n-k). - _Philippe Deléham_, Feb 25 2014 %H A004197 Reinhard Zumkeller, <a href="/A004197/b004197.txt">Rows n=0..100 of triangle, flattened</a> %F A004197 a(n) = A003983(n) - 1. %F A004197 G.f.: x*y/((1-x)*(1-y)*(1-x*y)). - _Franklin T. Adams-Watters_, Feb 06 2006 %F A004197 2^T(n,k) = A144464(n,k), 3^T(n,k) = A152714(n,k), 4^T(n,k) = A152716(n,k), 5^T(n,k) = A152717(n,k). - _Philippe Deléham_, Feb 25 2014 %F A004197 a(n) = (1/2)*(t - 1 - abs(t^2 - 2*n - 1)), where t = floor(sqrt(2*n+1)+1/2). - _Ridouane Oudra_, May 03 2019 %e A004197 From _Philippe Deléham_, Feb 25 2014: (Start) %e A004197 Top left corner of table: %e A004197 0 0 0 0 %e A004197 0 1 1 1 %e A004197 0 1 2 2 %e A004197 0 1 2 3 %e A004197 Triangle T(n,k) begins: %e A004197 0; %e A004197 0, 0; %e A004197 0, 1, 0; %e A004197 0, 1, 1, 0; %e A004197 0, 1, 2, 1, 0; %e A004197 0, 1, 2, 2, 1, 0; %e A004197 0, 1, 2, 3, 2, 1, 0; %e A004197 0, 1, 2, 3, 3, 2, 1, 0; %e A004197 0, 1, 2, 3, 4, 3, 2, 1, 0; %e A004197 0, 1, 2, 3, 4, 4, 3, 2, 1, 0; %e A004197 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0; %e A004197 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0; %e A004197 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0; %e A004197 0, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 0; %e A004197 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0; %e A004197 0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0; %e A004197 ... (End) %p A004197 T := (n, k) -> if n - k < k then n - k else k fi: %p A004197 for n from 0 to 9 do seq(T(n, k), k=0..n) od; # _Peter Luschny_, May 07 2023 %t A004197 Flatten[Table[IntegerExponent[2^(n - k) 3^k, 6], {n, 0, 20}, {k, 0, n}]] (* _Fred Daniel Kline_, May 29 2012 *) %o A004197 (Haskell) %o A004197 a004197 n k = a004197_tabl !! n !! k %o A004197 a004197_tabl = map a004197_row [0..] %o A004197 a004197_row n = hs ++ drop (1 - n `mod` 2) (reverse hs) %o A004197 where hs = [0..n `div` 2] %o A004197 -- _Reinhard Zumkeller_, Aug 14 2011 %o A004197 (PARI) T(x,y)=min(x,y) \\ _Charles R Greathouse IV_, Feb 07 2017 %Y A004197 Similar to but strictly different from A087062 and A261684. %Y A004197 Row sums give A002620. - _Reinhard Zumkeller_, Jul 27 2005 %Y A004197 Positions of zero are given in A117142. - _Ridouane Oudra_, Apr 30 2019 %Y A004197 Cf. A144464, A152714, A152716, A152717. %K A004197 tabl,nonn,easy,nice %O A004197 0,13 %A A004197 _David W. Wilson_ %E A004197 Mathematica program fixed by _Harvey P. Dale_, Nov 26 2020 %E A004197 Name edited by _Peter Luschny_, May 07 2023