cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004202 Skip 1, take 1, skip 2, take 2, skip 3, take 3, etc.

This page as a plain text file.
%I A004202 #43 Aug 01 2024 21:47:37
%S A004202 2,5,6,10,11,12,17,18,19,20,26,27,28,29,30,37,38,39,40,41,42,50,51,52,
%T A004202 53,54,55,56,65,66,67,68,69,70,71,72,82,83,84,85,86,87,88,89,90,101,
%U A004202 102,103,104,105,106,107,108,109,110,122,123,124,125,126,127,128,129,130,131,132
%N A004202 Skip 1, take 1, skip 2, take 2, skip 3, take 3, etc.
%C A004202 a(n) are the numbers satisfying m < sqrt(a(n)) < m + 0.5 for some integer m. - _Floor van Lamoen_, Jul 24 2001
%C A004202 a(A000217(n)) = A002378(n). [_Reinhard Zumkeller_, Feb 12 2011]
%C A004202 Complement of A004201. Upper s(n)-Wythoff sequence (as defined in A184117), for s(n)=A002024(n)=floor[1/2+sqrt(2n)]. I.e., A004202(n) = A002024(n) + A004201(n), with A004201(1)=1 and for n>1, A004201(n) = least positive integer not yet in (A004201(1..n-1) union A004202(1..n-1)). - _M. F. Hasler_ (following observations from _R. J. Mathar_), Feb 13 2011
%C A004202 Positions of record values in A256188 that are greater than 1: A014132(n) = A256188(a(n)). - _Reinhard Zumkeller_, Mar 26 2015
%H A004202 Reinhard Zumkeller, <a href="/A004202/b004202.txt">Table of n, a(n) for n = 1..10000</a>
%F A004202 a(n) = n + A000217(A002024(n)). - _M. F. Hasler_, Feb 13 2011
%F A004202 T(n, k) = n^2 + k, for n>=1, k>=1 as a triangular array. a(n) = n + A127739(n). - _Michael Somos_, May 03 2019
%e A004202 Interpretation as  Wythoff sequence (from _Clark Kimberling_):
%e A004202 s = (1,2,2,3,3,3,4,4,4,4...) = A002024 (n n's);
%e A004202 a = (1,3,4,7,8,9,13,14,...) = A004201 = least number > 0 not yet in a or b;
%e A004202 b = (2,5,6,10,11,12,17,18,...) = A004202 = a+s.
%e A004202 From _Michael Somos_, May 03 2019: (Start)
%e A004202 As a triangular array
%e A004202   2;
%e A004202   5,  6;
%e A004202   10, 11, 12;
%e A004202   17, 18, 19, 20;
%e A004202 (End)
%t A004202 a = Table[n, {n, 1, 210} ]; b = {}; Do[a = Drop[a, {1, n} ]; b = Append[b, Take[a, {1, n} ]]; a = Drop[a, {1, n} ], {n, 1, 14} ]; Flatten[b]
%t A004202 a[ n_] := If[ n < 1, 0, With[{m = Round@Sqrt[2 n]}, n + m (m + 1)/2]]; (* _Michael Somos_, May 03 2019 *)
%t A004202 Take[#,(-Length[#])/2]&/@Module[{nn=20},TakeList[Range[ nn+nn^2],2*Range[ nn]]]//Flatten (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, May 13 2019 *)
%o A004202 (Haskell)
%o A004202 a004202 n = a004202_list !! (n-1)
%o A004202 a004202_list = skipTake 1 [1..] where
%o A004202    skipTake k xs = take k (drop k xs) ++ skipTake (k + 1) (drop (2*k) xs)
%o A004202 -- _Reinhard Zumkeller_, Feb 12 2011
%o A004202 (PARI) A004202(n) = n+0+(n=(sqrtint(8*n-7)+1)\2)*(n+1)\2  \\ _M. F. Hasler_, Feb 13 2011
%o A004202 (PARI) {a(n) = my(m); if( n<1, 0, m=round(sqrt(2*n)); n + m*(m+1)/2)}; /* _Michael Somos_, May 03 2019 */
%o A004202 (Python)
%o A004202 from math import isqrt, comb
%o A004202 def A004202(n): return n+comb((m:=isqrt(k:=n<<1))+(k-m*(m+1)>=1)+1,2) # _Chai Wah Wu_, Jun 19 2024
%Y A004202 Cf. A004201, A007606, A064801.
%Y A004202 Cf. A014132, A256188, A127739.
%K A004202 nonn,tabl
%O A004202 1,1
%A A004202 Alexander Stasinski