cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004248 Array read by ascending antidiagonals: A(n, k) = k^n.

This page as a plain text file.
%I A004248 #34 Apr 27 2024 18:01:02
%S A004248 1,0,1,0,1,1,0,1,2,1,0,1,4,3,1,0,1,8,9,4,1,0,1,16,27,16,5,1,0,1,32,81,
%T A004248 64,25,6,1,0,1,64,243,256,125,36,7,1,0,1,128,729,1024,625,216,49,8,1,
%U A004248 0,1,256,2187,4096,3125,1296,343,64,9,1,0,1,512,6561,16384,15625,7776,2401,512,81,10,1
%N A004248 Array read by ascending antidiagonals: A(n, k) = k^n.
%C A004248 This array transforms into A371761 using the Akiyama-Tanigawa algorithm for powers applied to the rows. - _Peter Luschny_, Apr 16 2024
%C A004248 This array transforms into A344499 using the Akiyama-Tanigawa algorithm for powers applied to the columns. - _Peter Luschny_, Apr 27 2024
%H A004248 T. D. Noe, <a href="/A004248/b004248.txt">Rows n=0..50 of triangle, flattened</a>
%H A004248 Michelle Rudolph-Lilith, <a href="http://arxiv.org/abs/1508.07894">On the Product Representation of Number Sequences, with Application to the Fibonacci Family</a>, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
%F A004248 Table of x^y, where (x,y) = (0,0), (0,1), (1,0), (0,2), (1,1), (2,0), ...
%F A004248 As a number triangle, columns have g.f. x^k/(1 - kx). - _Paul Barry_, Mar 28 2005
%F A004248 From _Paul Barry_, Jul 13 2005: (Start)
%F A004248 T(n, k) = if(k <= n, k^(n - k), 0).
%F A004248 T(n, k) = Sum_{j=0..floor((n-k)/2)} (-1)^j*C(n-k, j)*C(n-k-j, n-k)*k^(n-k-2j).
%F A004248 (End)
%e A004248 Seen as an array that is read by ascending antidiagonals:
%e A004248 [0] 1, 1,   1,    1,     1,     1,      1,      1,       1, ...
%e A004248 [1] 0, 1,   2,    3,     4,     5,      6,      7,       8, ...
%e A004248 [2] 0, 1,   4,    9,    16,    25,     36,     49,      64, ...
%e A004248 [3] 0, 1,   8,   27,    64,   125,    216,    343,     512, ...
%e A004248 [4] 0, 1,  16,   81,   256,   625,   1296,   2401,    4096, ...
%e A004248 [5] 0, 1,  32,  243,  1024,  3125,   7776,  16807,   32768, ...
%e A004248 [6] 0, 1,  64,  729,  4096, 15625,  46656, 117649,  262144, ...
%e A004248 [7] 0, 1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, ...
%t A004248 T[x_, y_] := If[y == 0, 1, (x - y)^y];
%t A004248 Table[T[x, y], {x, 0, 11}, {y, x, 0, -1}] // Flatten (* _Jean-François Alcover_, Dec 15 2017 *)
%o A004248 (PARI)
%o A004248 T(x, y) = x^y \\ _Charles R Greathouse IV_, Feb 07 2017
%o A004248 (SageMath)
%o A004248 def Arow(n, len): return [k**n for k in range(len)]
%o A004248 for n in range(8): print([n], Arow(n, 9))  # _Peter Luschny_, Apr 16 2024
%Y A004248 For other versions see A051129 and A009998.
%Y A004248 Row sums are A026898, diagonal sums are A104872. [_Paul Barry_, Mar 28 2005]
%Y A004248 Cf. A003992, A048723, A371761, A344499.
%K A004248 tabl,nonn,easy,nice
%O A004248 0,9
%A A004248 _David W. Wilson_
%E A004248 New name by _Peter Luschny_, Apr 16 2024.