This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004288 #24 Aug 01 2025 17:05:51 %S A004288 1,10,11,10,101,110,1111111,10,11,1010,10111,110,101,11111110,1111, %T A004288 100,10001,110,1001,1010,101011111,101110,101001,110,1011111,1010, %U A004288 1001,11111110,1010011,11110,11111,100,100001,100010,100111111,110 %N A004288 Least positive multiple of n written in base 8 using only 0 and 1. %H A004288 Chai Wah Wu, <a href="/A004288/b004288.txt">Table of n, a(n) for n = 1..10000</a> %p A004288 f:= proc(n) local R, S, m, p, Snew, s; %p A004288 R[1]:= 1; R[0]:= 0; S:= {0,1}; %p A004288 for m from 1 do %p A004288 p:= 8^m mod n; %p A004288 Snew:= map(s -> s + p mod n, S); %p A004288 if member(0,Snew) then return R[-p mod n]+10^m fi; %p A004288 for s in Snew minus S do R[s] := R[s - p mod n] + 10^m od; %p A004288 S:= S union Snew; %p A004288 od %p A004288 end proc: %p A004288 1, seq(f(n), n=2..100); # _Robert Israel_, Dec 30 2014 %o A004288 (Python) %o A004288 def A004288(n): %o A004288 if n > 0: %o A004288 for i in range(1, 2**n): %o A004288 s = bin(i)[2:] %o A004288 if not int(s,8) % n: %o A004288 return int(s) %o A004288 return 0 # _Chai Wah Wu_, Dec 30 2014 %K A004288 nonn,base %O A004288 1,2 %A A004288 _David W. Wilson_ %E A004288 a(11), a(22), a(25) corrected by _Chai Wah Wu_, Dec 30 2014 %E A004288 Initial 0 deleted and offset corrected by _N. J. A. Sloane_, Jan 31 2024