This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004304 M0364 #30 Mar 28 2020 10:13:01 %S A004304 1,2,2,6,28,160,1036,7294,54548,426960,3463304,28910816,247104976, %T A004304 2154192248,19097610480,171769942086,1564484503044,14407366963440, %U A004304 133978878618904,1256799271555872,11881860129979440 %N A004304 Number of nonseparable planar tree-rooted maps with n edges. %D A004304 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A004304 Gheorghe Coserea, <a href="/A004304/b004304.txt">Table of n, a(n) for n = 0..200</a> %H A004304 Dov Tamari, <a href="https://doi.org/10.24033/bsmf.1446">Monoïdes préordonnés et chaînes de Malcev</a>, Bulletin de la Société Mathématique de France, Volume 82 (1954), 53-96. See end of Appendix II. %H A004304 T. R. S. Walsh, A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(75)90050-7">Counting rooted maps by genus. III: Nonseparable maps</a>, J. Combinatorial Theory Ser. B 18 (1975), 222-259. See Table IVc. %F A004304 From _Paul D. Hanna_, Nov 26 2009: (Start) %F A004304 G.f.: A(x) = [x/Series_Reversion(x*F(x)^2)]^(1/2) where F(x) = g.f. of A005568, where A005568(n) is the product of two successive Catalan numbers C(n)*C(n+1). %F A004304 G.f.: A(x) = F(x/A(x)^2) where A(x*F(x)^2) = F(x) where F(x) = g.f. of A005568. %F A004304 G.f.: A(x) = G(x/A(x)) where A(x*G(x)) = G(x) where F(x) = g.f. of A168450. %F A004304 G.f.: A(x) = x/Series_Reversion(x*G(x)) where G(x) = g.f. of A168450. %F A004304 Self-convolution yields A168451. %F A004304 (End) %p A004304 A004304 := proc(n) local N,x,ode ; Order := n+1 ; ode := x^2*diff(N(x),x,x)*(N(x)^3-16*x*N(x)) ; ode := ode + (x*diff(N(x),x))^3*(16-6*N(x)) ; ode := ode + (x*diff(N(x),x))^2*(12*N(x)^2-16*x-24*N(x)) ; ode := ode + x*diff(N(x),x)*(-8*N(x)^3+24*x*N(x)+12*N(x)^2) ; ode := ode + 2*N(x)^2*(N(x)^2-N(x)-6*x) ; dsolve({ode=0,N(0)=1,D(N)(0)=2},N(x),type=series) ; convert(%,polynom) ; rhs(%) ; RETURN( coeftayl(%,x=0,n)) ; end; for n from 0 to 20 do printf("%d,",A004304(n)) ; od ; # _R. J. Mathar_, Aug 18 2006 %t A004304 m = 22; %t A004304 F[x_] = Sum[2 (2n+1) Binomial[2n, n]^2 x^n/((n+2)(n+1)^2), {n, 0, m}]; %t A004304 A[x_] = (x/InverseSeries[x F[x]^2 + O[x]^m, x])^(1/2); %t A004304 CoefficientList[A[x], x] (* _Jean-François Alcover_, Mar 28 2020 *) %o A004304 (PARI) {a(n)=local(C_2=vector(n+1,m,(binomial(2*m-2,m-1)/m)*(binomial(2*m,m)/(m+1))));polcoeff((x/serreverse(x*Ser(C_2)^2))^(1/2),n)} \\ _Paul D. Hanna_, Nov 26 2009 %o A004304 (PARI) %o A004304 seq(N) = { %o A004304 my(c(n)=binomial(2*n,n)/(n+1), s=Ser(apply(n->c(n)*c(n+1), [0..N]))); %o A004304 Vec(subst(s, 'x, serreverse('x*s^2))); %o A004304 }; %o A004304 seq(20) %o A004304 \\ test: y=Ser(seq(200)); 0 == x^2*y''*(y^3 - 16*x*y) + (x*y')^3*(16-6*y) + (x*y')^2*(12*y^2-16*x-24*y) + x*y'*(-8*y^3 + 24*x*y + 12*y^2) + 2*y^2*(y^2-y-6*x) %o A004304 \\ _Gheorghe Coserea_, Jun 13 2018 %Y A004304 Cf. A000264. %Y A004304 Cf. A005568, A168450, A168451, A168452. - _Paul D. Hanna_, Nov 26 2009 %K A004304 nonn %O A004304 0,2 %A A004304 _N. J. A. Sloane_ %E A004304 More terms from _R. J. Mathar_, Aug 18 2006