This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004333 #29 Sep 07 2025 02:56:30 %S A004333 1,16,190,2024,20475,201376,1947792,18643560,177232627,1677106640, %T A004333 15820024220,148902215280,1399358844975,13136858812224, %U A004333 123234279768160,1155454041309504,10830060261901380,101489773667796800,950974260789566790,8910491434304783400,83491932238832602485 %N A004333 Binomial coefficient C(4n,n-3). %D A004333 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828. %H A004333 Seiichi Manyama, <a href="/A004333/b004333.txt">Table of n, a(n) for n = 3..1000</a> %H A004333 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %F A004333 D-finite with recurrence -3*(n-3)*(3*n+2)*(3*n+1)*(n+1)*a(n) + 8*n*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1) = 0. - _R. J. Mathar_, Mar 19 2025 %F A004333 a(n) ~ 2^(8*n+1/2) / (3^(3*n+7/2) * sqrt(Pi*n)). - _Amiram Eldar_, Sep 07 2025 %p A004333 A004333:=n->binomial(4*n, n-3); seq(A004333(n), n=3..100); # _Wesley Ivan Hurt_, Mar 15 2014 %t A004333 Table[Binomial[4 n, n - 3], {n, 3, 100}] (* _Wesley Ivan Hurt_, Mar 15 2014 *) %K A004333 nonn,easy,changed %O A004333 3,2 %A A004333 _N. J. A. Sloane_