This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004355 #59 Jul 21 2024 08:34:11 %S A004355 1,6,66,816,10626,142506,1947792,26978328,377348994,5317936260, %T A004355 75394027566,1074082795968,15363284301456,220495674290430, %U A004355 3173734438530120,45795673964460816,662252084388541314 %N A004355 Binomial coefficient C(6n,n). %C A004355 a(n) is asymptotic to c*(46656/3125)^n/sqrt(n), with c = sqrt(3/(5*Pi)) = 0.437019372236831628217354... - _Benoit Cloitre_, Jan 23 2008 %D A004355 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828. %H A004355 T. D. Noe, <a href="/A004355/b004355.txt">Table of n, a(n) for n = 0..100</a> %H A004355 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %F A004355 a(n) = C(6*n-1,n-1)*C(36*n^2,2)/(3*n*C(6*n+1,3)), n>0. - _Gary Detlefs_, Jan 02 2014 %F A004355 G.f.: A(x) = x*B'(x)/B(x), where B(x)+1 is g.f. of A002295. - _Vladimir Kruchinin_, Oct 05 2015 %F A004355 a(n) = GegenbauerC(n, -3*n, -1). - _Peter Luschny_, May 07 2016 %F A004355 From _Ilya Gutkovskiy_, Jan 16 2017: (Start) %F A004355 O.g.f.: 5F4(1/6,1/3,1/2,2/3,5/6; 1/5,2/5,3/5,4/5; 46656*x/3125). %F A004355 E.g.f.: 5F5(1/6,1/3,1/2,2/3,5/6; 1/5,2/5,3/5,4/5,1; 46656*x/3125). (End) %F A004355 RHS of identities Sum_{k = 0..n} binomial(3*n, k)*binomial(3*n, n-k) = %F A004355 Sum_{k = 0..2*n} (-1)^(n+k)*binomial(6*n, k)*binomial(6*n, 2*n-k) = binomial(6*n,n). - _Peter Bala_, Oct 07 2021 %F A004355 From _Peter Bala_, Feb 20 2022: (Start) %F A004355 5*n*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*a(n) = 6*(6*n-1)*(6*n-2)*(6*n-3)(6*n-4)*(6*n-5)*a(n-1). %F A004355 The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 5*A(x))^5 + (6^6)*x*A(x)^6 = 0. %F A004355 Sum_{n >= 1} a(n)*( x*(5*x + 6)^5/(6^6*(1 + x)^6) )^n = x. (End) %t A004355 Table[Binomial[6 n, n], {n, 0, 16}] (* _Michael De Vlieger_, Oct 05 2015 *) %o A004355 (Magma) [Binomial(6*n,n): n in [0..100]]; // _Vincenzo Librandi_, Apr 13 2011 %o A004355 (Maxima) %o A004355 B(x):=sum(binomial(6*n,n-1)/n*x^n,n,1,30); %o A004355 taylor(x*diff(B(x),x)/B(x),x,0,10); /* _Vladimir Kruchinin_, Oct 05 2015 */ %o A004355 (PARI) a(n) = binomial(6*n,n) \\ _Altug Alkan_, Oct 05 2015 %Y A004355 binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004368 (k = 7), A004381 (k = 8), A169958 - A169961 (k = 9 thru 12). %Y A004355 Cf. A002295 %K A004355 nonn,easy %O A004355 0,2 %A A004355 _N. J. A. Sloane_