This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004381 #50 Aug 16 2025 10:02:55 %S A004381 1,8,120,2024,35960,658008,12271512,231917400,4426165368,85113005120, %T A004381 1646492110120,32006008361808,624668654531480,12233149001721760, %U A004381 240260199935164200,4730523156632595024,93343021201262177400,1845382436487682488000 %N A004381 Binomial coefficient C(8n,n). %D A004381 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828. %H A004381 T. D. Noe, <a href="/A004381/b004381.txt">Table of n, a(n) for n=0..100</a> %H A004381 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %F A004381 a(n) = C(8*n-1,n-1)*C(64*n^2,2)/(3*n*C(8*n+1,3)), n>0. - _Gary Detlefs_, Jan 02 2014 %F A004381 From _Ilya Gutkovskiy_, Jan 16 2017: (Start) %F A004381 O.g.f.: 7F6(1/8,1/4,3/8,1/2,5/8,3/4,7/8; 1/7,2/7,3/7,4/7,5/7,6/7; 16777216*x/823543). %F A004381 E.g.f.: 7F7(1/8,1/4,3/8,1/2,5/8,3/4,7/8; 1/7,2/7,3/7,4/7,5/7,6/7,1; 16777216*x/823543). %F A004381 a(n) ~ 2^(24*n+1)/(sqrt(Pi*n)*7^(7*n+1/2)). (End) %F A004381 From _Peter Bala_, Feb 20 2022: (Start) %F A004381 The o.g.f. A(x) is algebraic: (1 - A(x))*(1 + 7*A(x))^7 + (8^8)*x*A(x)^8 = 0. %F A004381 Sum_{n >= 1} a(n)*( x*(7*x + 8)^7/(8^8*(1 + x)^8) )^n = x. (End) %F A004381 From _Seiichi Manyama_, Aug 16 2025: (Start) %F A004381 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(8*n+1,k). %F A004381 G.f.: 1/(1 - 8*x*g^7) where g = 1+x*g^8 is the g.f. of A007556. %F A004381 G.f.: g/(8-7*g) where g = 1+x*g^8 is the g.f. of A007556. (End) %t A004381 Table[Binomial[8 n, n], {n, 0, 20}] (* _Vincenzo Librandi_, Aug 07 2014 *) %o A004381 (Magma) [Binomial(8*n, n): n in [0..20]]; // _Vincenzo Librandi_, Aug 07 2014 %o A004381 (Python) %o A004381 from math import comb %o A004381 def A004381(n): return comb(n<<3,n) # _Chai Wah Wu_, Aug 01 2023 %Y A004381 Row 8 of A060539. %Y A004381 binomial(k*n,n): A000984 (k = 2), A005809 (k = 3), A005810 (k = 4), A001449 (k = 5), A004355 (k = 6), A004368 (k = 7), A169958 - A169961 (k = 9 thru 12). %K A004381 nonn,easy %O A004381 0,2 %A A004381 _N. J. A. Sloane_