A004402 Expansion of 1 / Sum_{n=-oo..oo} x^(n^2).
1, -2, 4, -8, 14, -24, 40, -64, 100, -154, 232, -344, 504, -728, 1040, -1472, 2062, -2864, 3948, -5400, 7336, -9904, 13288, -17728, 23528, -31066, 40824, -53408, 69568, -90248, 116624, -150144, 192612, -246256, 313808
Offset: 0
Keywords
References
- J. R. Newman, The World of Mathematics, Simon and Schuster, 1956, Vol. I p. 372.
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359.
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 103.
Crossrefs
See A015128 for a version without signs.
Programs
-
Julia
# JacobiTheta3 is defined in A000122. A004402List(len) = JacobiTheta3(len, -1) A004402List(35) |> println # Peter Luschny, Mar 12 2018
-
Maple
S:=series(1/JacobiTheta3(0,x),x,101): seq(coeff(S,x,j),j=0..100); # Robert Israel, Dec 29 2015
-
Mathematica
terms = 35; 1/EllipticTheta[3, 0, x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Jul 05 2017 *)
-
PARI
a(n)=if(n<0,0,polcoeff(1/sum(k=1,sqrtint(n),2*x^k^2,1+x*O(x^n)),n))
-
PARI
{a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^2*eta(x^4+A)^2/eta(x^2+A)^5, n))}
Formula
Ramanujan gave an asymptotic formula (see Almkvist).
G.f.: 1/Product_{m>0} ((1-q^(2m))(1+q^(2m-1))^2) = 1/theta_3(q).
a(n) = (-1)^n * A015128(n).
Comments