cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004405 Expansion of 1 / (Sum_{n=-oo..oo} x^(n^2))^4.

Original entry on oeis.org

1, -8, 40, -160, 552, -1712, 4896, -13120, 33320, -80872, 188784, -425952, 932640, -1988080, 4137024, -8422848, 16810536, -32943760, 63482760, -120440608, 225217904, -415498496, 756920160, -1362645440, 2425895712
Offset: 0

Views

Author

Keywords

Programs

  • Julia
    # JacobiTheta3 is defined in A000122.
    A004405List(len) = JacobiTheta3(len, -4)
    A004405List(25) |> println # Peter Luschny, Mar 12 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^4, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 18 2015 *)

Formula

a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)) / (32*n^(7/4)) * (1 - 35/(16*Pi*sqrt(n))). - Vaclav Kotesovec, Aug 18 2015, extended Jan 16 2017