cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004406 Expansion of 1 / (Sum_{n=-oo..oo} x^(n^2))^5.

This page as a plain text file.
%I A004406 #24 Oct 26 2023 00:19:59
%S A004406 1,-10,60,-280,1110,-3912,12600,-37760,106620,-286290,736184,-1822920,
%T A004406 4365800,-10149320,22971120,-50744448,109643350,-232145040,482403060,
%U A004406 -985229640,1980034104,-3920000400,7652388280,-14742829440
%N A004406 Expansion of 1 / (Sum_{n=-oo..oo} x^(n^2))^5.
%H A004406 Seiichi Manyama, <a href="/A004406/b004406.txt">Table of n, a(n) for n = 0..10000</a>
%F A004406 a(n) ~ (-1)^n * 5^(3/2)*exp(Pi*sqrt(5*n)) / (512*n^2). - _Vaclav Kotesovec_, Aug 18 2015
%F A004406 From _Ilya Gutkovskiy_, Sep 20 2018: (Start)
%F A004406 G.f.: 1/theta_3(x)^5, where theta_3() is the Jacobi theta function.
%F A004406 G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^5. (End)
%t A004406 nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^5, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 18 2015 *)
%Y A004406 Cf. A000122, A000132.
%K A004406 sign
%O A004406 0,2
%A A004406 _N. J. A. Sloane_