cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004410 Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-9).

This page as a plain text file.
%I A004410 #24 Sep 20 2018 09:17:35
%S A004410 1,-18,180,-1320,7902,-40824,188232,-792000,3088980,-11297546,
%T A004410 39090312,-128849976,406865880,-1236379320,3629385936,-10324840512,
%U A004410 28542038238,-76852151280,201967043260,-518957929080,1305848905416
%N A004410 Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-9).
%H A004410 Seiichi Manyama, <a href="/A004410/b004410.txt">Table of n, a(n) for n = 0..10000</a>
%F A004410 a(n) ~ (-1)^n * 243*exp(3*Pi*sqrt(n)) / (32768*n^3). - _Vaclav Kotesovec_, Aug 18 2015
%F A004410 From _Ilya Gutkovskiy_, Sep 20 2018: (Start)
%F A004410 G.f.: 1/theta_3(x)^9, where theta_3() is the Jacobi theta function.
%F A004410 G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^9. (End)
%t A004410 nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^9, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 18 2015 *)
%o A004410 (PARI) q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^9) \\ _Altug Alkan_, Sep 20 2018
%Y A004410 Cf. A000122, A008452.
%K A004410 sign
%O A004410 0,2
%A A004410 _N. J. A. Sloane_