This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A004412 #20 Sep 20 2018 09:18:30 %S A004412 1,-22,264,-2288,15994,-95568,505648,-2425280,10721832,-44229350, %T A004412 171861360,-633713808,2230733648,-7532979344,24502989984,-77036477760, %U A004412 234785552122,-695409096096,2006117554936,-5647472566736 %N A004412 Expansion of ( Sum_{n = -infinity..infinity} x^(n^2) )^(-11). %H A004412 Seiichi Manyama, <a href="/A004412/b004412.txt">Table of n, a(n) for n = 0..10000</a> %F A004412 a(n) ~ (-1)^n * exp(Pi*sqrt(m*n)) * m^((m+1)/4) / (2^(3*(m+1)/2) * n^((m+3)/4)), set m = 11 for this sequence. - _Vaclav Kotesovec_, Aug 18 2015 %F A004412 From _Ilya Gutkovskiy_, Sep 20 2018: (Start) %F A004412 G.f.: 1/theta_3(x)^11, where theta_3() is the Jacobi theta function. %F A004412 G.f.: Product_{k>=1} 1/((1 - x^(2*k))*(1 + x^(2*k-1))^2)^11. (End) %t A004412 nmax = 30; CoefficientList[Series[Product[((1 + (-x)^k)/(1 - (-x)^k))^11, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Aug 18 2015 *) %o A004412 (PARI) q='q+O('q^99); Vec(((eta(q)*eta(q^4))^2/eta(q^2)^5)^11) \\ _Altug Alkan_, Sep 20 2018 %Y A004412 Cf. A000122, A008453. %K A004412 sign %O A004412 0,2 %A A004412 _N. J. A. Sloane_